Town of Addison

DRAINAGE DESIGN SUMMARY

IN ORDER TO DETERMINE THE DRAINAGE CHARACTERISTICS OF THE PRE-DEVELOPMENT CONDITIONS FOR THIS SITE, PIBURN & CARSON REVIEWED EXISTING TOWN OF ADDISON DRAINAGE STUDIES AND REQUIREMENTS. THE SUBJECT PROJECT IS PART OF THE DRAINAGE BASIN STUDY FOR THE ADDISON ROAD PAVING PROJECT, DEVELOPED BY BIRKHOFF. HENDRICKS & CARTER, LLP, DATED 5/4/2010, LYING IN BASIN DA-B1, AND A PORTION OF DA-A5 OF THAT STUDY.

BASED ON MEETINGS WITH TOWN OF ADDISON STAFF FOR THE EARLIER PARKING LOT PROJECT, FOR THIS DEVELOPMENT SITE, APPROVED IN NOVEMBER 2013, IT WAS ESTABLISHED TO USE THE DRAINAGE AREA MAP FROM THE ADDISON ROAD STUDY, AND THAT DATA FOR DRAINAGE RUNOFF CALCULATIONS, AS THE BASIS FOR EXISTING CONDITIONS. THE EXISTING DRAINAGE SYSTEMS TO WHICH THIS SITE ULTIMATELY DRAIN WERE DESIGNED FOR FULLY DEVELOPED SITE CONDITIONS. THE PRIOR DRAINAGE STUDY UTILIZED AN 1100 OF 8.74 AND A RUNOFF COEFFICIENT OF 0.90, WHICH IS WHERE THESE VALUES ORIGINATED

THE PROJECT SITE LIES IN TWO DRAINAGE BASINS, DA-B1 AND A PORTION OF DA-A5. PLEASE REFER TO THE ADJACENT MAPS FOR SCHEMATIC OF THE DRAINAGE DIVIDES IN PRE- AND POST-DEVELOPMENT. IN THE POST DEVELOPMENT MAP, THE PRE-EXISTING DRAINAGE DIVIDE BETWEEN DA-A5 AND DA-B1 IS LABELLED; THE CROSS-HATCHED AREA SHOWN NO LONGER DRAINS TO DA-B1, BUT INSTEAD DRAINS TO DA-A5.

AT DESIGN POINT A, THERE IS AN EXISTING 16' CURB INLET. THIS RECEIVES 11.51 CFS FLOW FROM THE PROPOSED DEVELOPMENT, 40.05 CFS FROM OFF-SITE AREA G AND 5.03 CFS FROM OFF-SITE DA-A5A, TOTALING 56.58 CFS. THE DESIGN CAPACITY OF THIS RECEIVING SYSTEM IS 58 68 CES

AT DESIGN POINT B, THE EXISTING RECEIVING INLET HAS A CAPACITY OF 9.83 CFS. THE PROPOSED SYSTEM RELEASES 9.26 CFS, WHICH IS LESS THAN THE ALLOWABLE CAPACITY OF THE EXISTING INLET.

1	DRAINAG	EAREA	CALCULAT	IONS - P	RE-DEVEL	OPMENT	
	DA NO.	AREA	RUNOFF COEFF.	Tc	1100	Q100	REMARKS
- [acre		min.	in/hr	cfs	
	EXISTING	CONDITIO	NS		1		
1	Α	0.06	0.90 *	10	8.74 *	0.47	SHEET FLOW TO S.W. PORTION OF PROPERTY
	В	0.60	0.90 *	10	8.74 *	4.72	SHEET FLOW TO S.W. PORTION OF PROPERTY
	С	0.97	0.90 *	10	8.74 *	7.63	SHEET FLOW TO S.W. PORTION OF PROPERTY
	D	0.07	0.90 *	10	8.74 *	0.55	SHEET FLOW TO N.W. PORTION OF PROPERTY
	E	0.64	0.90 *	10	8.74 *	5.03	SHEET FLOW TO N.W. PORTION OF PROPERTY
	F	0.55	0.90*	10	8.74 *	4.33	SHEET FLOW TO N.W. PORTION OF PROPERTY
	G	4.80	0.90 *	10	8.74 *	37.76	(OFF-SITE) SHEET FLOW TO EXISTING 16' CURB INLET

OPOS	ED CONDIT	IONS				
A	0.06	0.90	10	9.27	0.50	DRAINS TO PROPOSED AREA DRAINS 1 & 2
В	0.60	0.90	10	9.27	5.01	DRAINS TO PROPOSED 4'X4' GRATE INLET 3
C	0.97	0.90	10	9.27	8.09	DRAINS TO PROPOSED COMBINATION THREE GRATE INLET 4
D	0.07	0.90	10	9.27	0.58	DRAINS TO PROPOSED AREA DRAINS 6 & 7
E	0.64	0.90	10	9.27	5.34	DRAINS TO PROPOSED 4'X4' GRATE INLET 8
F	0.55	0.90	10	9.27	4.59	DRAINS TO PROPOSED 10' CURB INLET 9
G	4.80	0.90	10	9.27	40,05	(OFF-SITE) AREA DRAINS TO PROPOSED WYE INLET 5

* RUNOFF COEFFICIENT (0.9) AND I100 (8.74 IN/HR) HAVE BEEN ACCOUNTED FOR AS PER PLANS OF ADDISON ROAD IMPROVEMENTS,

POST DEVELOPMENT & DRAINAGE EXHIBIT

BELT LINE ROAD

PROPOSED DRAINAGE DIVIDE FOR B1/A5

EXISTING DRAINAGE

sibility for the adequacy of

AREA FROM PRE-DEVELOPMENT BASIN B1 THAT IS DRAINING TO PRE-DEVELOPMENT BASIN A5 IN

POST-DEVELOPMENT CONDITIONS

these plans remains with the Engin who prepared them. In approving these

plans, the Town of Addison makes no representation of adequacy of the work

of the Design Engineer.

									HYDR	RAULIC CO	DMPUTAT	IONS FOR	STORM D	RAINS							
RUNOFF COLLECTION POINT (Inlet or Manhole)		Distance between Collection	INCREMENTAL Accum- DRAINAGE ulated AREA "CA"					Time at Upstream Station	Intensity "I"	Storm Water Runoff	Slope of Hydraulic Gradient	Number of Boxes or Pipes		Height of Box (ft)	in Sewer	Velocity Head at Upstream	Flow Time in Sewer	Time at Downstream Station	Hydraulic Grade Line Elevation	Hydraulic Grade Line Elevation	Remarks
UPSTREAM STATION	DOWNSTREAM STATION	Points (feet)	Area No.	Drainage Area "A" (acres)	Runoff Coeff.	Increm- ental "CA"		(minutes)	(in/hr)	"Q" (cfs)	"Sf"		Pipe Diameter (inches)		Collection Points "V" (f.p.s.)	Station (feet)	(minutes)	(minutes)	Downstream (elev)	Upstream (elev)	
		(leet/		77 (00.00)			-	(minutes)	1 (,)		PROPOSED	STORM LIN			. (1		1 11	The second		
6+56.10	4+93,58	162.52	A	0.06	0.90	0.054	0.054	10.00	9.27	0.50	0.0002	1	12		0.64	0.00	4.25	14.25			
4+93.58	2+59.06	234.52	В	0.60	0.90	0.540	0.594	14.25	8.15	4.84	0.0021	1	18		2.74	0.11	1.43	15.68	117	11 11 11	
2+59.06	0+00.00	259.06	С	0.97	0.90	0.873	1.467	15.68	7.84	11.51	0.0026	1	24		3.66	0.16	1.18	16.85	628.71	10000	
			TOTAL	1.63						11.51			sed Develop	ment							
										40.05 5.03	Q from off-		-A5A as per	plans of ADI	DISON ROAD	IMPROVEME	NTS				
									Design Point A 56.58 Total Q collected at the Existing 16' Curb Inlet and released into the Existing 33" RCP (Lateral "A-5") is less than the design capacity (58.68 cfs) Capacity of the Existing 33" RCP (Lateral "A-5")*										y (58.68 cfs)		
										F	PROPOSED :	STORM LIN	E B								
3+93.92	2+64.10	129.82	D	0.07	0.90	0.063	0.063	10.00	9.27	0.58	0.0003	1	12		0.74	0	2.91	12.91	630.62		Partial Flow Begins at STA. 2+98.0
2+64.10	0+24.72	239.38	E	0.64	0.90	0.576	0.639	12.91	8.47	5.41	0.0027	1	18		3.06	0.14	1.30	14.21	629.84	630.48	The state of the s
0+24.72	0+00.00	24.72	F	0.55	0.90	0.495	1.134	14.21	8.16	9.26	0.0017	1	24		2.95	0	0.14	14.35	629.80	629.84	
TOTAL 1.26 Design Point B 9.26 Q released from Propose												d Development is less than the design Q (9.83 cfs)									
									9.83 Q from Pre-Development Area DA-B1**												

* SEE SHEETS 9 AND 14 FOR PROPOSED AND EXISTING PROFILES.

N.89°31'W --- 361.80

N 69"31"W. - 351.80"

5 89°36'E - 379.80'

N.89"51 W

DESIGN

POINT B

BELT LINE RD.

PRE-DEVELOPMENT &

OFF-SITE DRAINAGE EXHIBIT

1. 89° 47'

POINT A

THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF PRICING AND INTERIM REVIEW UNDER THE AUTHORITY OF RICHARD CARSON, JR. P.E. NO. 40854 ON 2/6/15.

Town of Addison Control Point No. COA-5. 190 feet south from the intersection of Edwin Lewis Dr &

Quorum Drive. Then 2 feet from the west edge of sidewalk, 50.5 feet from the west side of median in Quorum Dr & 76 feet from fire hydrant. NAVD 88 Elevation = 630.10

JRG

2/6/15

Piburn & Carson, LLC

DRAINAGE AREA CALCULATIONS **HOME 2 SUITES by HILTON**

SITE DEVELOPMENT

PUBLIC WORKS DEPARTMENT TOWN OF ADDISON, TEXAS DESIGN DRAWN DATE SCALE NOTES FILE

1"=20"

PC