

Design Report for

Midway Road Reconstruction

May 2002

Prepared By:

Grantham, Burge & Weldbauer

ENGINEERING DESIGN REPORT

FOR

MIDWAY ROAD RECONSTRUCTION

for the

 $\left(\right)$

_)

TOWN OF ADDISON

THIS DOCUMENT REPRESENTS WORK-IN-PROGRESS AND IS NOT TO BE USED FOR CONSTRUCTION OR PERMITTING. DZ 10 BRUCE R. GRANTINA 0.62639

Prepared by:

GBW Engineers, Inc. 1919 South Shiloh Road Suite 500, LB 27 Garland, Texas 75042

June 2002

Engineering Design Report for Midway Road Reconstruction

	_	Page
1.0	INTRODUC	CTION
2.0	EXISTING	PAVEMENT CONDITION
3.0	PROJECT P	PHASING
4.0	CONSTRUC	CTION SEQUENCING AND TRAFFIC CONTROL
5.0	5.1 Exis	WER ANALYSIS 12 ting Storm Sewer System 12 osed Storm Sewer System Improvements 14
6.0	OPINION O	PF PROBABLE COST
7.0	CONCLUSI	ONS AND RECOMMENDATIONS
LIST (OF EXHIBIT: Exhibit 1 Exhibit 2 Exhibit 3 Exhibit 4 Exhibit 5 Exhibit 6 Exhibit 7 Exhibit 8	S Belt Line to Lindbergh Traffic Sequencing Alternative 1 Belt Line to Lindbergh Traffic Sequencing Alternative 2 Belt Line to Lindbergh Traffic Sequencing Alternative 3 Lindbergh to Keller Springs Traffic Sequencing Alternative 1 Lindbergh to Keller Springs Traffic Sequencing Alternative 2 Lindbergh to Keller Springs Traffic Sequencing Alternative 3 Drainage Area Map Proposed Drainage Improvements (Sheets 1 - 3 of 3)
LIST	OF TABLES Table 1 Table 2 Table 3 Table 4	Engineer's Opinion of Probable Cost - Phase 1 Engineer's Opinion of Probable Cost - Phase 2 Engineer's Opinion of Probable Cost - Phase 3 Engineer's Opinion of Probable Cost - Total Project
LIST	OF APPENDI	ICES
	Appendix A	
	Appendix B Appendix C	May 7, 2001 memo from GBW to Steve Chutchian concerning Ductbanks May 16, 2001 letter from GBW to Steve Chutchian concerning the Midway Road Pavement Section.
	Appendix D	Alpha Testing Geotechnical Report
	Appendix E	Existing Storm Sewer System Spreadsheets
	Appendix F	Proposed Storm Sewer System Spreadsheets

Appendix G HY-8 Existing Culvert Analysis

)

)

GBW Engineers, Inc. (GBW) was retained by the Town of Addison on September 7, 2000, to provide the surveying, engineering, and geotechnical services required for the design of Phase One of the reconstruction of Midway Road from Belt Line Road to Keller Springs Road. GBW's subconsultants on this project were HNTB Corporation (construction sequencing and traffic control) and Alpha Testing, Inc. (geotechnical).

GBW's agreement with the Town represents Phase One of what is anticipated to be a two-phase design process. Phase One consists of the preparation of all the construction plans and specifications necessary for the reconstruction work except for construction sequencing and traffic control, landscaping and irrigation, storm water pollution prevention plan and erosion control, signalization, and temporary lighting, and sidewalks. All median opening widths, turn lane lengths, and street and driveway radii have been reviewed and design changes made where appropriate.

Phase One included the preparation of this engineering report which is intended to provide a basis for the Town to establish a construction phasing and funding approach for this project. The scope of work for this design report included the following project issues:

- phasing alternatives for the reconstruction work
- a recommended construction sequencing and traffic control approach for the project
- the limits of reconstruction work which can be accomplished with available bond funds
- preparation of an Opinion of Probable Cost.

Phase Two, which will be completed at a later date, consists of completing the remaining construction plans along with separating the plans prepared in Phase One into a separate bid package for construction phasing purposes. Public notification and coordination with other cities, DART and affected businesses will be included in Phase Two. Bidding and construction services will also be provided.

During the execution of this project, several important design related issues surfaced that required detailed evaluation. As these issues were not included in the scope of services for the design report, they are not included in the main body of this report. However, in order to make this report an all-inclusive reference for Phase One of the Midway Road Reconstruction Project, previous memos and letters that discuss related design issues have been included in the Appendices A through C. These memos include the following:

- Appendix A: April 2, 2001 memo from GBW to Steve Chutchian (Town) and Jerry Holder (HNTB) concerning Cement Treated Permeable Base;
- Appendix B: May 7, 2001 memo from GBW to Steve Chutchian concerning Ductbanks;
- Appendix C: May 16, 2001 letter from GBW to Steve Chutchian concerning the Midway Road Pavement Section.

Section 1

Ì

)

Ì

Phase One of the design included the preparation of a geotechnical report by Alpha Testing. This report contains the results of field explorations and laboratory testing and an engineering interpretation of this data. The results and analyses were used to develop recommendations for remedial design and reconstruction of the Midway Road pavement. A copy of the geotechnical report is contained in Appendix D.

An important design issue that surfaced which was beyond GBW's initial scope of services, was the adequacy of the existing storm drainage system. The Town's staff determined that it would be worthwhile to evaluate whether or not the existing storm sewer system meets current city criteria. One reason for doing so is the significant savings that could be realized by upgrading the existing system during the pavement reconstruction process, as opposed to doing so independently from the reconstruction work. Given the comprehensive nature of GBW's evaluation of the storm drainage system, a written summary is provided in Section 5.

Section 2

Ì

)

)

In order to obtain a comprehensive inventory of the distress in the Midway Road pavement, the following steps were taken:

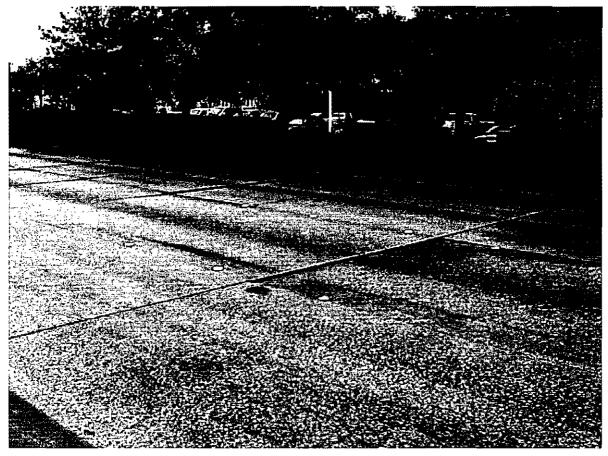
- In conjunction with staff from the Town of Addison and Alpha Testing, GBW performed an indepth inspection of the existing condition of the Midway Road pavement.
- GBW performed an independent walk-through, from Belt Line Road to Keller Springs Road, during which all the evidence of pavement distress was marked on a set of base sheets.
- Town of Addison staff provided a history of the pavement's life, including a summary of the repair and rehabilitation work which had previously been carried out.
- Alpha Testing obtained, tested and evaluated 22 pavement core samples and furnished a geotechnical report.

Pictures taken during the walk-through, which are representative of the condition of Midway Road, are shown at the end of this section.

A summary of the results of GBW's inventory and analysis is contained in a letter report which was prepared for the Town of Addison on May 16, 2001 and is contained in Appendix C. The highlights of this letter report are provided below:

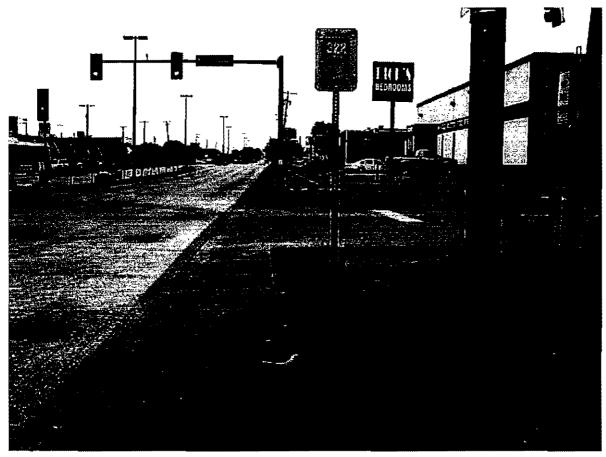
- The pavement distress along the northbound lanes is more pronounced than the southbound lanes.
- The worst section of the southbound lanes is in the vicinity of the railroad crossing near the Belt Line Road end of the project where there is a sag in the profile.
- The cross-slope on the northbound lanes, which is mostly in the 1/8 to 1/4-inch per foot range, is significantly less than the southbound lanes, where it is mostly in the 1/4 to ½-inch per foot range.
- The difference between the northbound and southbound lane cross-slopes appears to have resulted from an attempt to match the existing ground at the east and west right-of-way lines when the current Midway Road pavement was designed in 1982.
- The flatter cross-slope on the northbound lanes increases the likelihood that surface water will pond or runoff slowly, resulting in a higher infiltration rate into the subgrade through pavement joints and cracks.
- In addition to rainfall, sprinkler systems in the medians and adjacent parkways are other sources of water which can infiltrate the subgrade.
- Flat longitudinal slopes along some sections of Midway Road also slow the rate of storm water runoff; for example, in the vicinity of the railroad crossing.
- Poor surface drainage appears to be the primary reason why pavement distress has been more rapid along most of the northbound lanes than along the southbound lanes.
- The poor condition of many pavement joints, some of which may have been widened when the pavement was milled and resealed in 1994, provide conduits for surface water to reach the subgrade.

- The plasticity index of the underlying clay soil is generally in the 18 to 55 range, which indicates a high potential to shrink and swell.
- The soil borings do not provide evidence of a ground water problem.
- Only eight of the 22 soil borings showed evidence of lime in the subgrade, which suggests that the lime stabilized subgrade was not uniformly constructed.
- A combination of moisture penetration over time and nonuniform lime stabilization during construction has probably reduced the bearing capacity of the subgrade.
- The load transfer capability of the transverse contraction joints has been insufficient to support the heavy traffic volume, resulting in a difference in pavement elevation at the front and back ends of adjacent slabs.
- This difference, which results in a bump at the pavement joints on the northbound lanes in particular, has also resulted in a transverse crack at the midpoint of some slabs.



)

Looking North towards Wright Brothers Drive



Looking North from Wiley Post Road

)

East side of Midway between railroad tracks and Lindberg Drive

Looking North from Lindberg Drive

Looking South towards railroad tracks

Looking South towards Beltline Road

Section 3

)

)

After the pavement inspection process was completed, GBW calculated approximate quantities for the reconstruction work. These quantities were then matched with unit prices obtained from similar projects and from contractor estimates to determine whether or not there were sufficient bond funds available to reconstruct Midway Road from Belt Line Road to Keller Springs Road as one project.

According to Town staff, \$4.75 million in bond funds is available for this project. It was determined that these funds were budgeted to include payment for engineering services, landscape and irrigation replacement, temporary lighting, in addition to all other project related expenses.

An initial order-of-magnitude Opinion of Probable Cost prepared by GBW revealed that the available bond money was significantly less than that total funds required to reconstruct the entire project. Consequently, it was apparent that, unless additional funds were found, the project would need to be phased, with the limits of Phase 1 reconstruction being established so as not to exceed the available \$4.75 million.

As GBW's plan preparation work neared completion, a more detailed Opinion of Probable cost of \$6,682,583.60 was prepared for the reconstruction of the complete project in one phase. This Opinion of Probable Cost, which is included in Section 5.0, confirmed that insufficient funds were available to reconstruct the roadway, from Belt Line Road to Keller Springs Road, in one phase. At this time, GBW met with the Town's staff to determine the most appropriate construction phasing limits.

Through coordination with the Town's staff, it was determined to reconstruct the project in three phases, with the worst condition pavement being replaced first and the pavement in the best condition being constructed last. The Phase One Reconstruction limits were established such that this phase could be constructed with the available funds. The Opinion of Probable Cost for each phase includes an allowance for the landscaping and irrigation, which was provided by Dave Baldwin, a landscape architect under separate contract with the Town. Section 5 of this report presents an Opinion of Probable Cost for each construction phase in more detail.

Reconstruction Phases

Phase 1: Construct the northbound lanes from Belt Line Road to Keller Springs Road (approximately 5700 feet of roadway) and the southbound lanes from Belt Line Road to Lindbergh Drive (approximately 1500 feet of roadway).

Opinion of Probable Cost \$4,300,251.56

Phase 2: Construct the southbound lanes from Boyington Drive to Keller Springs Road (approximately 1700 feet of roadway).

5

Opinion of Probable Cost

Phase 3: Construct the southbound lanes from Lindbergh Drive to Boyington Drive (approximately 2500 feet of roadway).

Opinion of Probable Cost \$1,668,715.62

)

)

GBW's subconsultant, HNTB, prepared construction sequencing and traffic control alternatives for the Midway Road Pavement Reconstruction project. During Phase 1 of the project, approximately 1500 linear feet of the northbound and southbound lanes will be constructed simultaneously from Belt Line Road to Lingbergh Drive. The remainder of Phase 1 and all of Phases 2 and 3, from Lindbergh Drive to Keller Springs Road, the project will consist of the northbound and southbound lanes being constructed separately. Therefore, the construction sequencing has been broken into two sections, Belt Line Road to Lindbergh Drive and Lindbergh Drive to Keller Springs Road.

Belt Line Road to Lindbergh Drive

Through this segment of the project, both the northbound and southbound lanes will be reconstructed during Phase 1. Exhibits 1, 2 and 3 illustrate the lane sequencing alternatives considered for this segment of the project. It should be noted that each construction sequencing alternative involves the installation of temporary pavement in the median. The temporary paving of the median is needed in order to provide sufficient pavement surface so that at least two lanes of traffic can be maintained during the reconstruction work. The median landscaping will need to be removed and replaced, however, the Town's Landscape staff had projected to re-landscape the Midway Road corridor in the future. In addition, the street lights in the median will need to be removed prior to, and replaced after, the reconstruction work. It is also anticipated that temporary lighting will be required while the median lights are out of service. Temporary relocation of the railroad gates will need to be coordinated with DART.

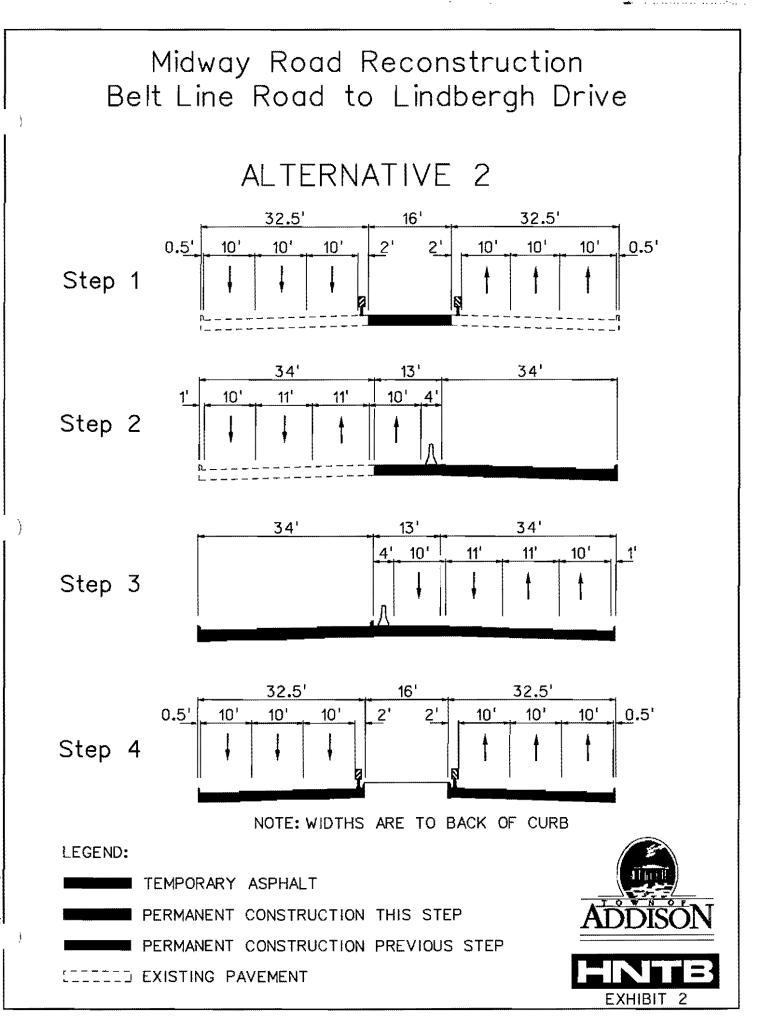
The only temporary paving alternative to the median is to use the parkways and adjacent properties. However, the impact on existing driveways, parking, landscaping inlets and other related improvements, along with the need to acquire numerous temporary construction easements from the adjacent property owners, made this alternative less desirable. The following is a description of each.

Alternative 1 -- Both Directions: This alternative would provide two lanes in each direction with a continuous left turn lane, leaving two lanes to be constructed during Steps 2, 3 and 4.

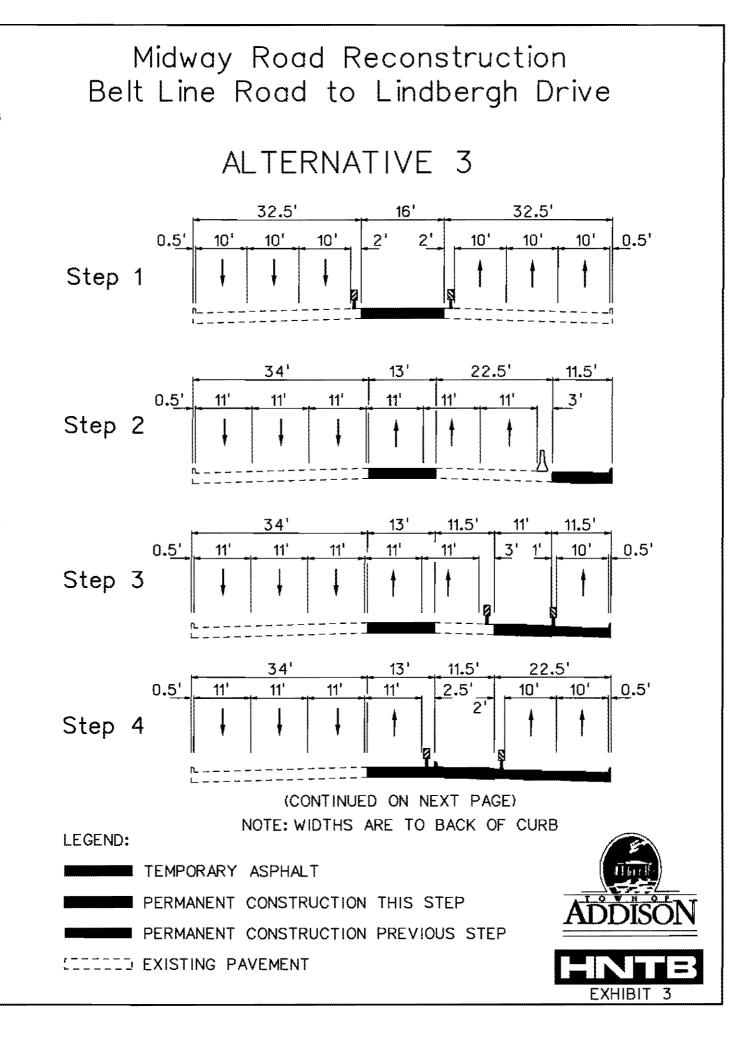
Step 1

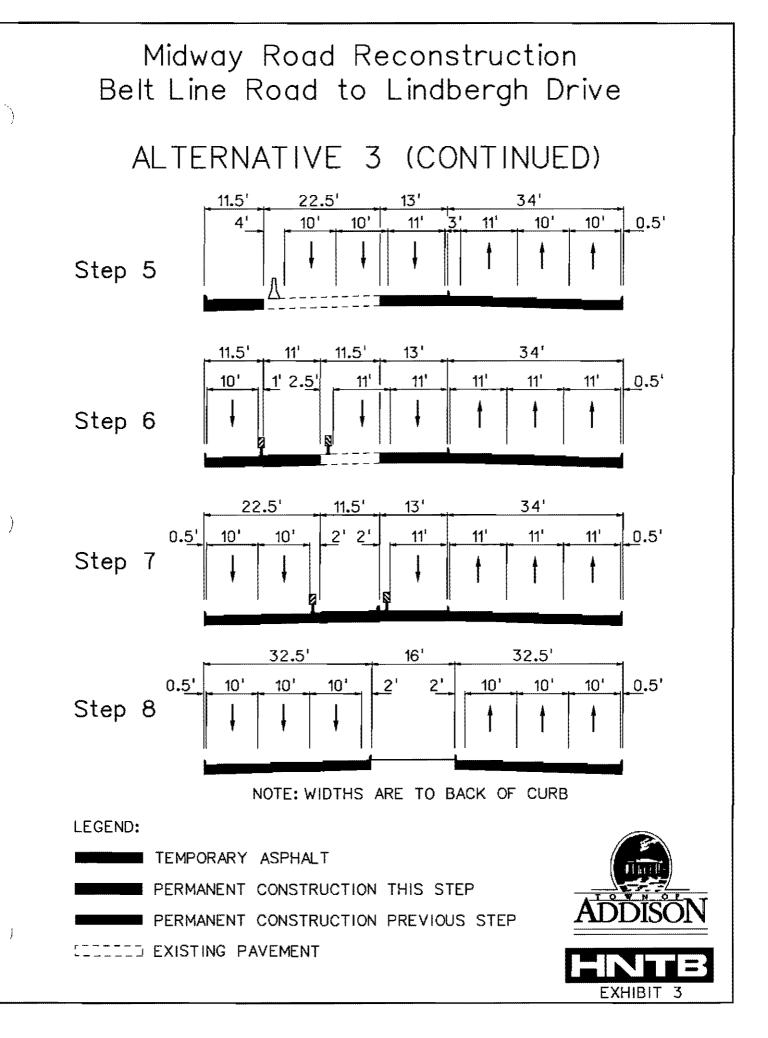
- Remove necessary street lights, traffic lights, and landscaping.
- Install necessary temporary street lights and traffic lights.
- Remove the center median and install temporary asphalt.

Step 2


- Move traffic to allow for the construction of the first two outside lanes. Step 3
- Once the first two outside lanes are constructed, move traffic to these lanes and construct the opposite outside two lanes.

Step 4


- Move traffic to the two outside lanes on each side and construct the center lanes and median.
- Install permanent street lights, traffic lights, and median landscaping.
- During this step there would not be a continuous left turn lane.


di V32921 \h1\cdaV typi ca1s, dan

or 1329217h1 Leds 1+* +yp1co1s, don

typicale, dan gi \32921\hi\cda\

gi \32921\hi\cds*

typicols. don

.

Alternative 1: Pros and Cons

Pros

- Removes left turning vehicles
 from through traffic lanes
- No splits in same direction traffic
- Curb offsets in Steps 1 and 2

Cons

- 10-foot lanes
- Left turns in Step 3 in very few locations
- Vertical panels in Step 3 do not provide positive protection from pavement drop off
- No curb offsets in Step 3
- Some driveways may be closed temporarily

Alternative 2 -- Both Directions: This alternative proposes to construct three lanes of traffic while maintaining two lanes of traffic in each direction during Steps 2 and 3. No continuous left turn lane is provided.

<u>Step 1</u>

- Remove necessary street lights, traffic lights, and landscaping.
- Install necessary temporary street lights, traffic lights, and landscaping.
- Remove the center median and install temporary asphalt.

<u>Step 2</u>

• Move traffic to the outer three southbound lanes and the temporary median asphalt while the northbound lanes are constructed.

Step 3

• Reverse traffic for the construction of the southbound lanes.

Step 4

- Construct the median and turning lanes.
- Install permanent street lights, traffic lights, and landscaping.

Alternative 2: Pros and Cons

Pros

Cons

- Lower construction costs likely
 Left and right turning movements will impede through traffic
- Shorter duration project likely Lower capacity than other two options (due to turns)

Construction Sequencing and Traffic Control

Cons

•	Positive protection for pavement drop offs	•	10-foot lanes
•	No splits in same direction traffic	6	No curb offsets in Step 3
•	Curb offsets in Steps 1 and 2	٠	Good signing and sign maintenance is critical

Alternative 3 -- Both Directions This alternative provides three lanes in each direction at all times. During some steps of the sequencing for this alternative, traffic flow in one direction would be split by traffic control devices. No continuous turning lanes would be provided.

Step 1

- Remove necessary street lights, traffic lights, and landscaping.
- Install necessary temporary street lights and traffic lights.
- Remove the center median and install temporary asphalt and traffic control devices.

Step 2

Move traffic to facilitate one lane of construction.

Step 3

• Open the new lane to traffic and close the next lane for construction. Steps 4 through 7

• Repeat this step until all the lanes are constructed.

Step 8

- Construct the median and turning lanes.
- Install permanent street lights, traffic lights, and landscaping.

<u>Alternative 3</u>: Pros and Cons

Pros

Cons

- Allows for 3 lanes of traffic each direction throughout construction
 Splits same direction traffic during construction process causing safety concerns and potential to confuse
- Curb offsets in Steps 2, 3, 4, and 5
- Vertical panels do not provide positive protection for pavement drop off
 - 10-foot lanes in most steps

motorists

- No curb offsets in Steps 1 and 6
- Longer duration construction likely
- More costly construction likely

Section 4 Construction Sequencing and Traffic Control

<u>Recommended Alternative</u>: Alternatives 1 and 2 are preferred to Alternative 3 because they have less sequencing steps which reduces the construction time. Alternative 1 is preferred over Alternative 2 because the continuous turn lane will provide for better traffic flow during most of the construction. Consequently, Alternative 1 is the preferred alternative.

Lindbergh Drive to Keller Springs Road

)

* And *

North of Lindbergh Drive, the construction of the northbound and southbound lanes will be performed separately for all three phases of construction. Exhibits 4, 5 and 6 illustrate the lane sequencing alternatives that were considered.

Alternative 1 – One Direction: This alternative, which follows the same concept as Alternative 1 - Both Directions, would provide two lanes in each direction with a continuous left turn lane during Step 2, leaving two lanes under construction.

Step 1

- Remove necessary street lights, traffic lights, and landscaping.
- Install necessary temporary street lights and traffic lights.
- Remove the center median and install temporary asphalt.

Step 2

Move traffic to allow for the construction of the two outside lanes.

Step 3

- Move traffic to the two new lanes and construct the remaining lane and left turn lanes.
- Install permanent street lights, traffic lights and median landscaping.

The pros and cons for this alternative, which includes the expense of removing and replacing the median, are similar to those identified for Alternative 1 - Both Directions.

Alternative 2 – One Direction: This alternative would provide two lanes of traffic in each direction, allowing for the construction of three lanes. No continuous left turn lane would be provided.

Step 1

• Remove necessary street lights, traffic lights and landscaping.

Install necessary temporary street lights and traffic lights.

Remove the center median and install temporary asphalt.

Step 2

Move traffic to allow for the construction of all three lanes.

Step 3

- Move traffic to the new pavement.
- Install permanent street lights, traffic lights, and median landscaping.

The pros and cons for this alternative, which includes the expense of removing and replacing the median, are similar to those identified for Alternative 1 - Both Directions.

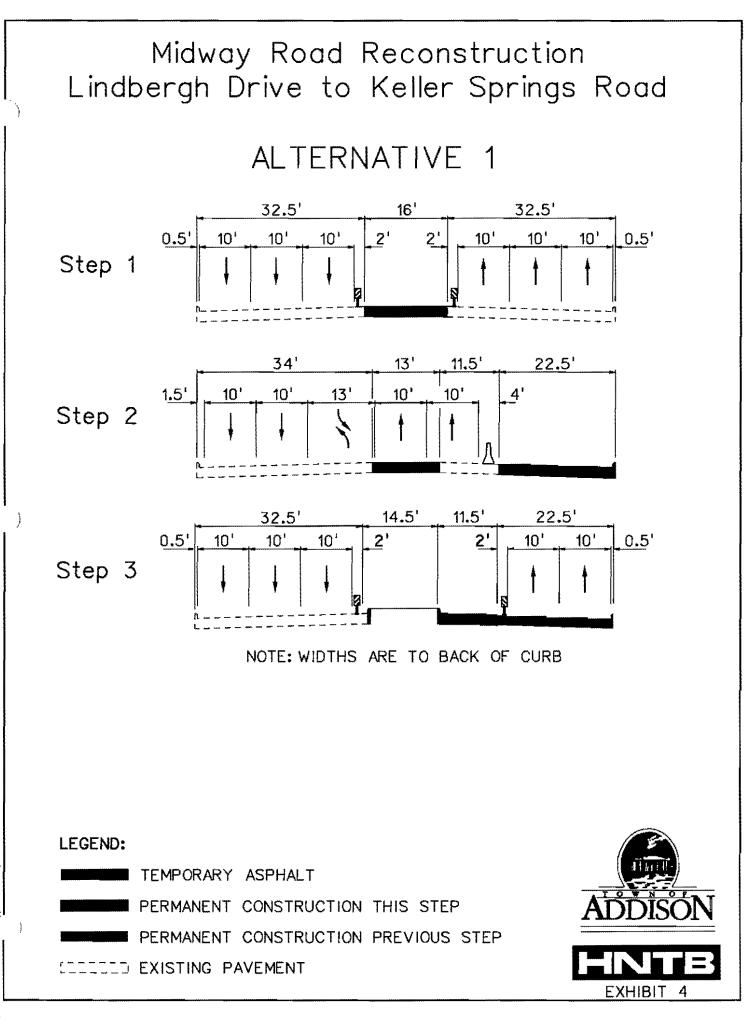
June 2002

)

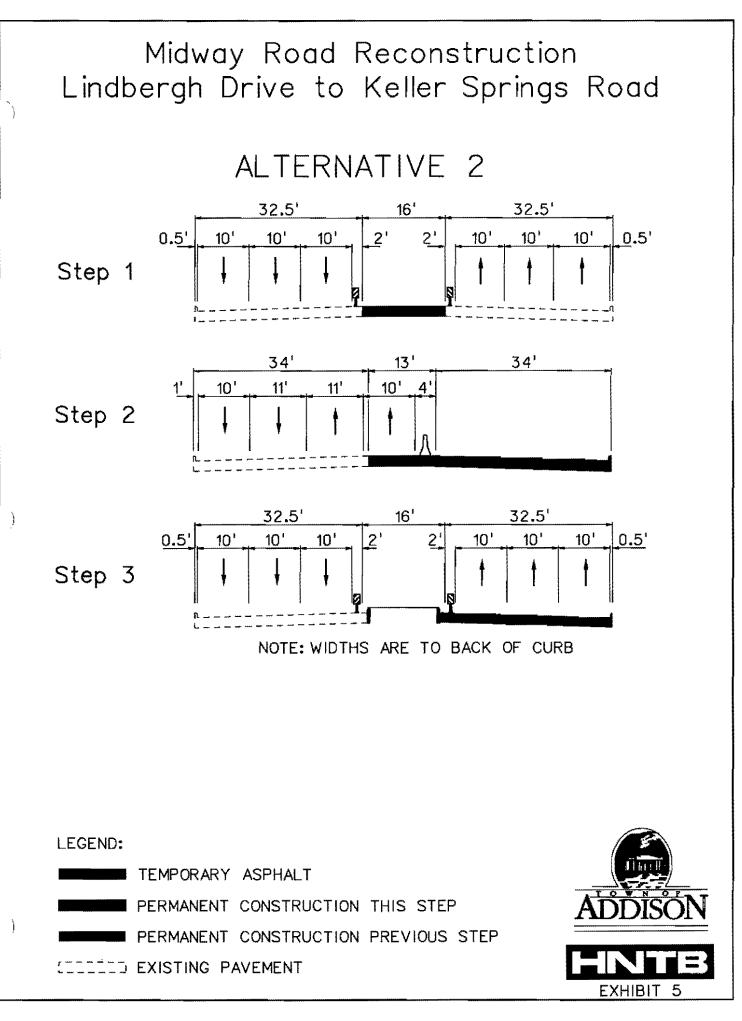
)

Alternative 3 -- One Direction: This alternative does not require the removal of the median. In the direction of construction, two 10' lanes of traffic would be provided without turning lanes, leaving one lane to be constructed at the time.

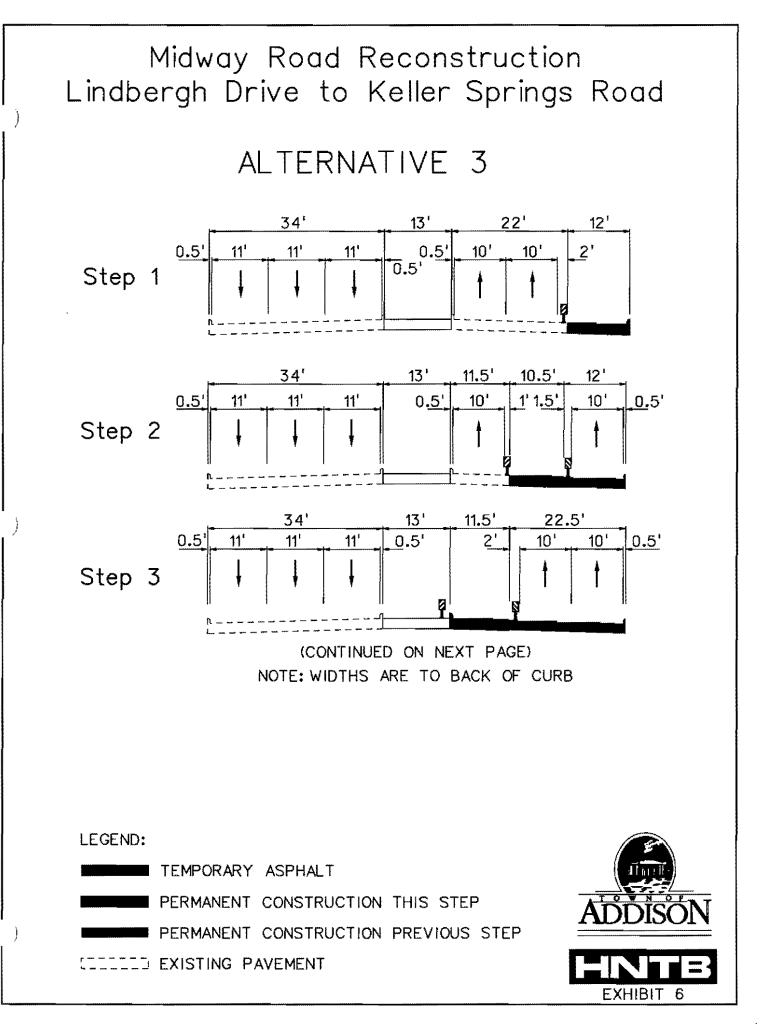
Step 1


- Move traffic from the outside lane to remaining two lanes, providing 10' traffic lanes.
- Demolish and construct outside lane.

Steps 2 and 3


- Move one lane of traffic to new surface and demolish and construct next lane.
- Repeat until all lanes and turning lanes are constructed.

The pros and cons for this alternative, which does not require the median removal, are similar to those identified for Alternative 3 -- Both Directions.


Alternative 3 is the preferred alternative because it saves the considerable expense of removal and replacement of the median, the street lighting, and the landscaping. In addition, no temporary lighting is required.

g: \32921\h1\cds\tr" *yp1c01s2, dgn

'ypicals2, dgn 01 122921 111 10061+

'ypłcals2, dgn 0: \32921\h1\cds\+

ì

1

As an extension of the scope of this design report, GBW performed an analysis of the storm sewer system along Midway Road from Belt Line Road to Keller Springs Road. Exhibits 7 and 8 have been included in this section to show the drainage areas and the existing and proposed improvements to the storm sewer system.

To analyze the existing and proposed storm sewer system, a spreadsheet was developed based upon the principles outlined in the Town of Addison's Drainage Criteria Manual. The results are attached in Appendices B and C. The following is a summary of the analysis of the existing system, and the proposed modifications, which will bring the existing system up to current Town standards.

5.1 Existing Storm Sewer System

The existing Midway Road storm sewer system between Belt Line Road and Keller Springs Road consists of five separate storm sewer lines. Lines A, C and D outfall into a 9' x 5' concrete box culvert located just south of the DART owned railroad crossing, while Line B outfalls into Line A. No plans were found for Line E which drains one inlet in the northbound lanes just upstream of the Keller Springs intersection. As a result, it was not possible to analyze this system.

The following is a detailed description of the four lines.

South of 9' x 5' Box Culvert, North of Belt Line Road

- Line A: 158 linear feet of 30" RCP
 - intercepts flow from the northbound lanes via one 10' inlet located in a low-point of the roadway;
 - outfalls into box culvert.
- Line B: 19 linear feet of 21" RCP, 303 linear feet of 24" RCP
 - intercepts flow from the north and southbound lanes via 1-20' inlet and 2-10' inlets;
 - outfalls into Line A.

North of 9' x 5' Box Culvert, South of Wright Road

- Line C: 420 linear feet of 24" RCP, 337 linear feet of 30" RCP, 163 linear feet of 36" RCP, 387 linear feet of 42" RCP, 644 linear feet of 48" RCP, 691 linear feet of 2 barrel 42" RCP, 139 linear feet of 2 barrel 48" CMP; 2,781 total linear footage of storm sewer
 - intercepts flow from the north and southbound lanes via 1-20' inlet, 21-10' inlets and 1-6' inlet;
 - outfalls into box culvert.
- Line D: 136 linear feet of 24" RCP; 166 linear feet of 40" CMP;
 - intercepts flow from the northbound lanes via one 20' inlet located in a low-point of the roadway;
 - outfalls into box culvert.

9' x 5' Box Culvert

The 9' x 5' box culvert was designed on a 1.25% slope. It is approximately 165 feet long with two 30 degree bends located approximately 10 to 15 feet from each end to align the culvert with the incoming and outgoing channels. These channels are trapezoidal with 2:1 side slopes and a 10 foot flat bottom. The bottom and the side slopes, up to a depth of 4 feet, are lined with concrete riprap. The downstream channel has a slope of approximately 1.0%.

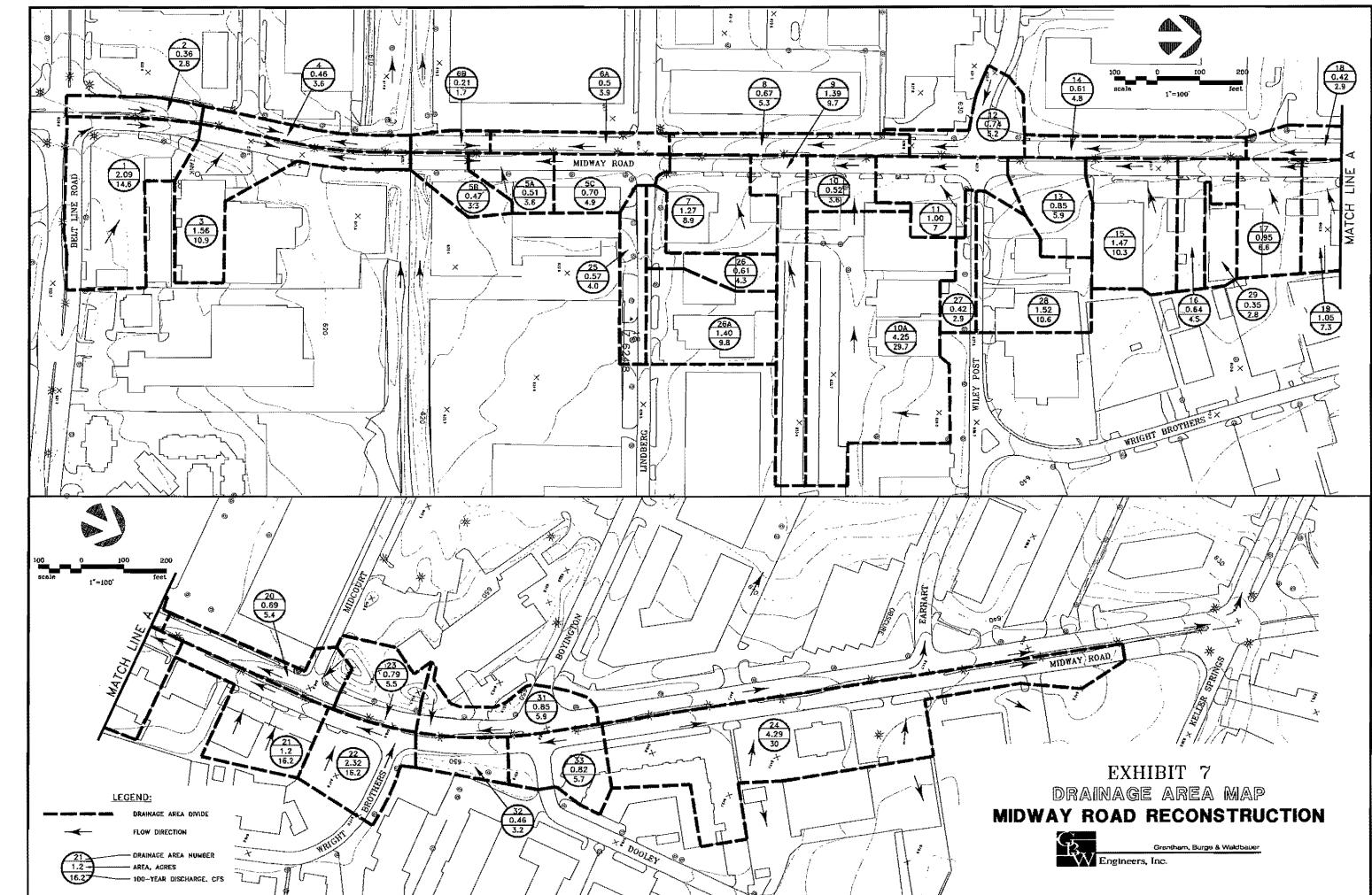
Exhibit 9 shows the as-builts for the box culvert. The plans do not provide a hydraulic grade line elevation through the box or a summary of the computations performed to develop the flow. A tailwater of 616.12 for the box is provided; however, the storm event and flow used to determine this tailwater was not indicated.

The existing 9' x 5' box culvert carries the flow from a local drainage ditch that intercepts the drainage east of Midway Road. According to the as-built plans, the box culvert was designed to carry a flow of approximately 700 cfs; however, GBW's drainage calculations show that a 100-year flow at this culvert for a fully developed watershed of approximately 1,334 cfs. This flow was developed in conjunction with the drainage calculations for Arapaho Road Phase 2.

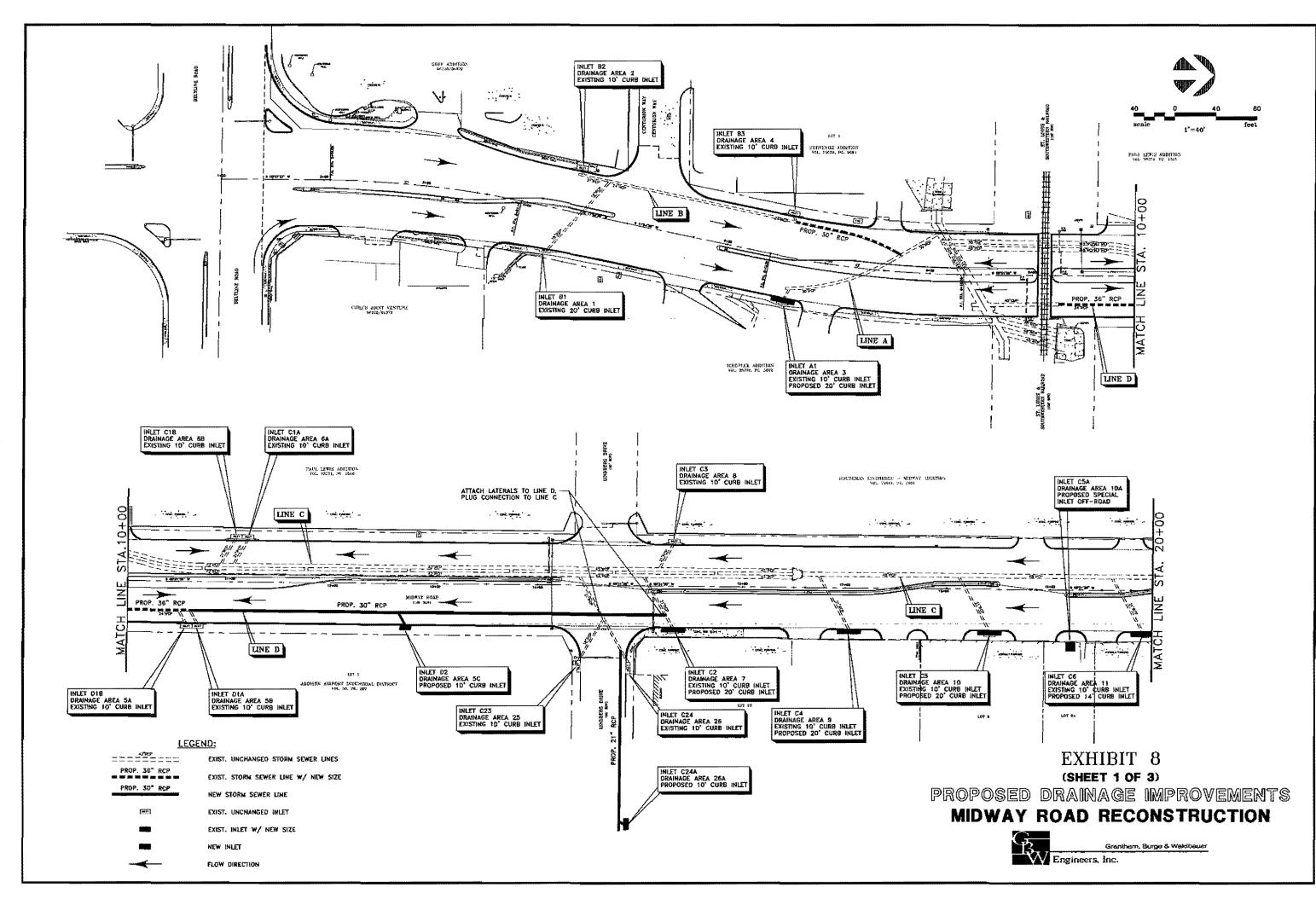
To determine the tailwater for the storm sewer analysis, it was necessary to determine the hydraulics of the existing box culvert. The Federal Highway Administration's Culvert Analysis program, HY-8, was used, however, HY-8 does not take into account the occurrence of backwater in the channel. Midway Road is approximately 4 feet higher than the top of the box in elevation with a sloping embankment from the parkway to the top of the box. The top of the channel bank immediately upstream of Midway Road ends about one foot below the top of the box; consequently, any backwater in the channel would not exceed the height of the culvert before it overflows the channel banks. The overflow storage area is sufficiently large that no over flow over Midway Road has been reported from backwater in the channel.

Based on the HY-8 analysis, overtopping of the roadway occurs around 500 cfs. The box culvert is under inlet control during flows greater than 100 cfs. Based on this analysis, the box culvert does not have the capacity to carry the flows from a 100-year flood event. The results of the analysis are provided in Appendix D. It should be noted, however, that an additional box culvert is proposed at this location in conjunction with the Arapaho 2 project.

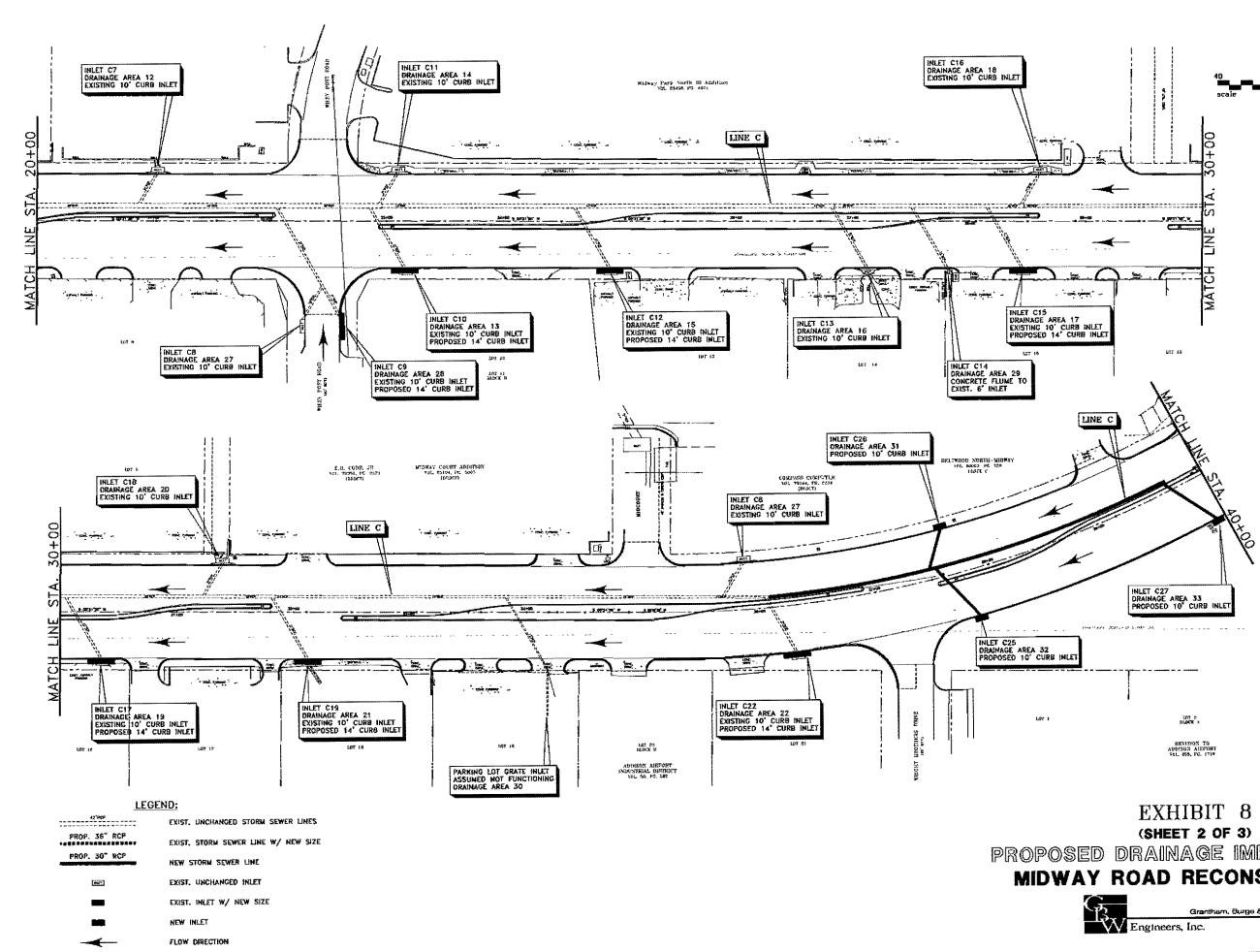
The existing system was analyzed based on the geometry of the existing roadway and the proposed roadway. Under both conditions, many of the inlets along the northbound lanes were undersized causing excessive carryover between inlets the allowable gutter depth along the majority of the northbound lanes to be exceeded. The analysis appears to indicate that for the majority of the system, the actual pipe system is sized adequately to carry the flow; however, due to inadequate inlets in the existing system, much of the water is currently detained in the streets and slowly released into the pipe system.


Ì

J

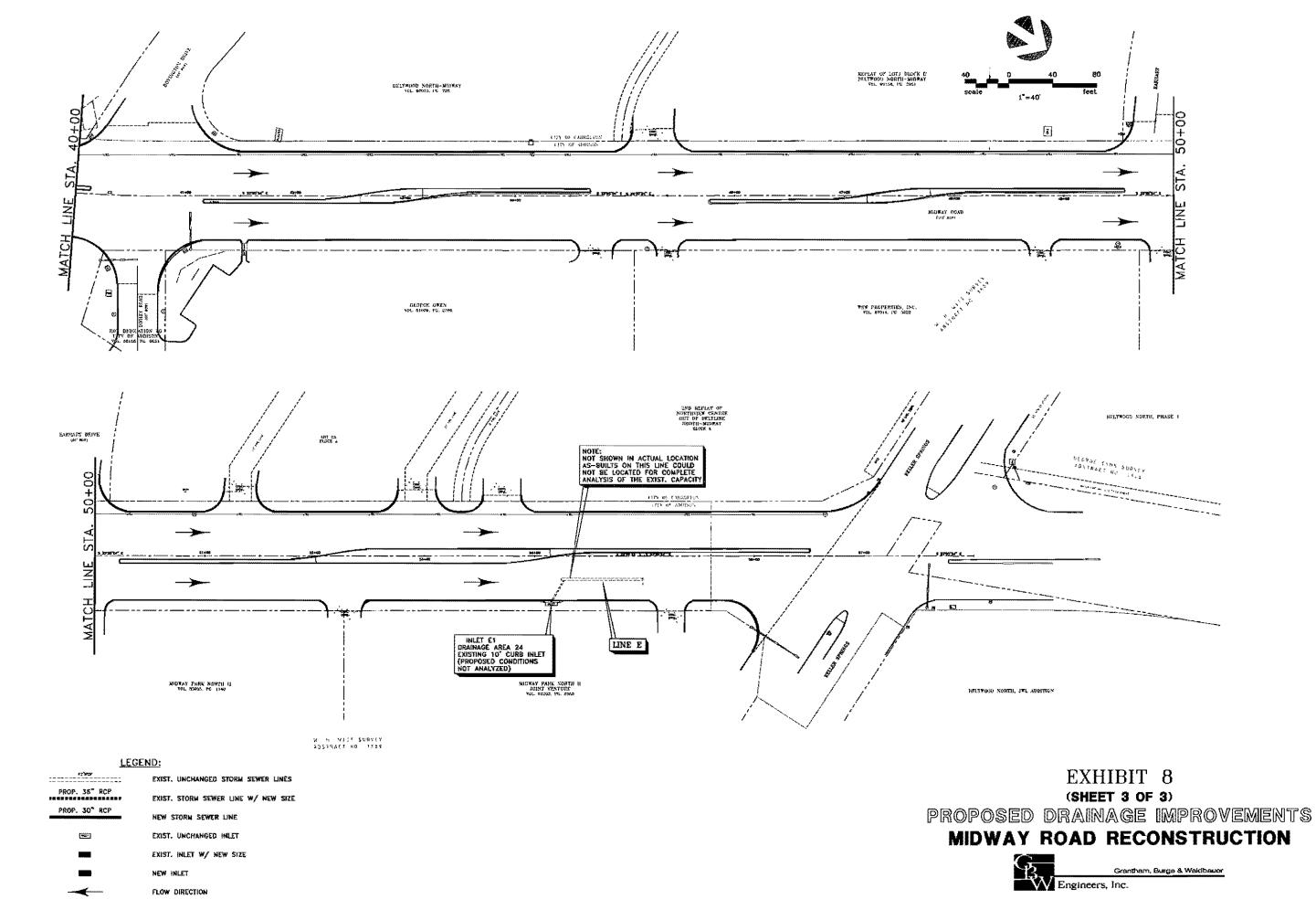

5.2 Proposed Storm Sewer System Improvements

Because the analysis shows that, for the majority of the system, the pipes are adequate to carry the 100-year flow, the proposed modifications focus primarily on new inlets and the extension of the system in select locations. The following is a summary of the storm drainage modifications that are recommended. These modifications have been illustrated in Exhibit 8.


- Line A: Expand the existing 10' curb inlet to a 20' curb inlet.
- Line B: Replace 108 linear feet of 24" RCP with 30" RCP beginning at Inlet / Lateral B3 and ending at the tie-in to Line A.
- Line C: Extend Line C north on Midway with 330 linear feet of 24" RCP and add 3 10' curb inlets.
 - Replace or expand 11 10' curb inlets with 14' and 20' curb inlets, depending on the location. Remove inlets C2, C23, and C24 from Line C and connect to Line D (see below).
 - Add a special inlet opening to drain area 10A prior to the runoff reaching the street.
- Line D: Extend Line D north on Midway with 470 linear feet of 30" RCP and connect inlets C2, C23 and C24 to Line D.
 - Inlet C2 should be expanded to a 20' curb inlet.
 - An additional 10' curb inlet on Lindbergh should be added to decrease the flow depth in the gutter. This would include an additional 200 linear feet of 21" RCP.
 - One 10' curb inlet should be added to Line D south of Lindbergh on Midway.

100-238\ DRAWING\ 258EXH

ļ


Graniham, Burge & Waldbauer

1 = 40

MIDWAY ROAD RECONSTRUCTION

PROPOSED DRAINAGE IMPROVEMENTS

;)

MIDWAY ROAD RECONSTRUCTION

Based on the recommended project phasing and construction sequencing, an Opinion of Probable Cost has been prepared. Tables 1 through 3 contain the Opinions of Probable Cost for Phases 1, 2, and 3, respectively. Table 4 includes an Opinion of Probable Cost for the entire roadway, given that it is constructed as one project. These costs, which include a 10% contingency, are shown below:

Phase 1:	\$4,300,251.56
Phase 2:	\$1,073,233.92
Phase 3:	\$1,668,715.62
Entire Project:	\$6,682,583.60

As previously noted, the current funding available for Phase 1 of the project is \$4.75 million, which includes design and landscaping.

The following assumptions were made when preparing the Opinions of Probable Costs for this project:

- The cost of entire project constructed at one time is less than the sum of the three phases, due to economies of scale.
- Proposed improvements to the existing storm sewer system as outlined in this report have been included.
- Concrete sidewalks will be replaced when located directly adjacent to the existing curb.
- Median brick pavers will be used in areas where the median width is less than 3'.
- Coordination with DART regarding the railroad crossing gates will be required during the design and construction process.
- Coordination with Oncor will be required for the removal and replacement of the street lights and installation of the new traffic signals.
- A 10-inch Portland cement pavement section with dowelled joints on a crushed limestone base and a compacted subgrade has been utilized.
- A minimum pavement strength of 650 psi has been specified.
- A thicker pavement section has been used in lieu of lime stabilization in order to reduce the construction time.

TABLE 1 ENGINEER'S OPINION OF PROBABLE COST PHASE 1 MIDWAY ROAD RECONSTRUCTION NORTHBOUND LANES FROM BELT LINE ROAD TO KELLER SPRINGS (5,700 LINEAR FEET) SOUTHBOUND LANES FROM BELT LINE ROAD TO LINDBERG (1,500 LINEAR FEET) ADDISON, TEXAS

ITEM		UNIT	UNIT COST	TOTAL QUANTITY	TOTAL COST
	ITEM DESCRIPTION		\$110,000.00		\$110.000.00
2	MOBILIZATION PREPARE RIGHT OF WAY	LS STA	\$710,000.00	1 57	\$142,500.00
	UNCLASSIFIED ROADWAY EXCAVATION	CY	\$10.00		\$55,000.00
4	SAWCUT EXISTING PAVEMENT / DRIVEWAY	LF	\$3.00	······································	\$14,679.00
5	REMOVE EXISTING CONCRETE PAVEMENT	SY	\$7.50		\$228,757.5
6	REMOVE EXISTING CONCRETE DRIVEWAY	SY	\$10.00		\$16,550.00
7	10" REINFORCED CONCRETE PAVEMENT (DOWELLED JOINTS)	SY	\$50.00	32.883	\$1,644,150.00
8	6" CRUSHED STONE BASE	SY	\$6.00	33,869	\$203,214.00
9	6" COMPACTEDED SUBGRADE	SY	\$3.00	36,174	\$108,522.00
10	6* INTEGRAL CONCRETE CURB	<u>ال</u>	\$3.00	11,869	\$35,607.00
11	MONOLITHIC MEDIAN NOSE	EA	\$1,000.00	4	\$4,000.00
	6" CONCRETE DRIVEWAY	SY	\$25.00	1,655	\$41,375.00
	MEDIAN BRICK PAVERS	SF	\$7.50	1,592	\$11,940.00
	REMOVE / REPLACE 4" REINFORCED CONCRETE SIDEWALK (5')	SY	\$45.00	598	\$26,910.00
	TEMPORARY 8" ASPHALT (PLACE AND REMOVE)	SY	\$20.00		\$35,720.00
	TACK COAT (0.05 GAL / SY)	GAL LF	\$2.00	89 162	\$178.60
	RAILROAD HEADER RELOCATE EXISTING FIRE HYDRANT ASSEMBLY	EA	\$200.00	102	\$32,400.00 \$1,200.00
	REMOVE / REPLACE STORM SEWER INLET	EA	\$2,500.00	8	\$20,000.00
	ADJUST EXISTING WATER VALVE COVERS	EA	\$250.00	19	\$4,750.00
	ADJUST EXISTING SANITARY SEWER MANHOLES	EA	\$600.00	8	\$4,800.00
	ADJUST EXISTING UTILITY MANHOLES	EA	\$750.00	5	\$3,750.00
	20' CURB INLET	EA	\$3,000.00	4	\$12,000.00
	14' CURB INLET	EA	\$2,500.00	9	\$22,500.00
25	10' CURB INLET	EA	\$2,500.00	4	\$10,000.00
26	SPECIAL INLET OPENING OFF ROAD	EA	\$5,000.00	1	\$5,000.00
	36" RCP STORM SEWER PIPE	LF	\$60.00	334	\$20,040.00
	30" RCP STORM SEWER PIPE	LF	\$55.00	578	\$31,790.00
	24" RCP STORM SEWER PIPE	LF	\$45.00	330 .	\$14,850.00
	21" RCP STORM SEWER PIPE		\$35.00	652	\$22,820.00
	REMOVE EXISTING INLET	EA	\$500.00	13	\$6,500.00
	REMOVE SHRUBS	EA EA	\$20.00 \$75.00	<u>88</u> 12	\$1,760.00
	REMOVE TREE GREATER THAN 6"	EA	\$150.00	10	\$900.00
······································	BLOCK SODDING FOR PARKWAYS	SY	\$5.00	4,372	\$21,860.00
*****	24" SOLID WHITE THERMOPLASTIC STOP BAR		\$10.00	541	\$5,410.00
	6" SOLID WHITE THERMOPLASTIC STRIPES	LF	\$2.50	1,374	\$3,435.00
	4" WHITE REFLECTIVE TYPE I-W-C CERAMIC BUTTON	EA	\$6.00	1,962	\$11,772.00
39	6"x 6" WHITE REFLECTIVE JIGGLE BAR TILES	EA	\$15.00	143	\$2,145.00
40	WHITE THERMO DIRECTIONAL PAVEMENT MARKINGS	EA	\$250.00	21	\$5,250.00
41	RR CROSSING SYMBOL	EA	\$500.00	6	\$3,000.00
	REMOVE RR ARM ASSEMBLY	EA	\$5,000.00	2	\$10,000.00
	REMOVE LIGHT POLE ASSEMBLY	EA	\$2,000.00	22	\$44,000.00
	TEMPORARY RR ARM ASSEMBLY (SEQUENCING)	EA	\$10,000.00	2	\$20,000.00
45	TEMPORARY 4" WHITE TRAFFIC STRIPE		\$0.50	4,963	\$2,481.50
	TEMPORARY 4" YELLOW TRAFFIC STRIPE		\$0.50		\$12,323.00
	TEMPORARY TRAFFIC SIGNALIZATION AT INTERSECTIONS 2" PVC CONDUIT FOR LIGHT POLES	EA LF	\$20,000.00 \$2.50	4	\$80,000.00 \$3,375.00
	PULL BOXES FOR LIGHT POLES	EA	\$350.00	7	\$2,450.00
	INLET EROSION PROTECTION	EA	\$100.00	20	\$2,000.00
	SILT FENCE	<u> </u>	\$4.00	990	\$3,960.00
	TEMPORARY CONSTRUCTION ENTRANCE	EA	\$2,500.00	6	\$15,000.00
******	MAINTAIN EROSION CONTROL DEVICES	LS	\$10,000.00	1	\$10,000.00
	REMOVE TRAFFIC SIGNALS (MEDIANS)	EA	\$5,000.00	5	\$25,000.00
	SIGNS, BARRICADES, TRAFFIC CONTROL	МО	\$10,000.00	18	\$180,000.00
	ADJUST EXISTING UTILITIES	LS	\$100,000.00	1	\$100,000.00
	ROOT BARRIER	LF	\$5.00	2,039	\$10,195.00
	REPLACE LIGHT POLE ASSEMBLY	EÄ	\$2,000.00	10	\$20,000.00
	PERMANENT TRAFFIC SIGNALS AT INTERSECTIONS (MEDIAN ONLY)	EA	\$30,000.00	5	\$150,000.00
	REPLACE RR ARM ASSEMBLY	<u> </u>	\$50,000.00	2	\$100,000.00
			\$20,000.00	1	\$20,000.00
62	REMOVE/REPLACE LANDSCAPING AND IRRIGATION	LS	\$150,000.00	1	\$150,000.00
				SUB-TOTAL	\$3,909,319.60
			10 %	CONTINGENCY	\$390,931.96
TOTAL				\$4,300,251.50	

j

TABLE 2 ENGINEER'S OPINION OF PROBABLE COST PHASE 2 MIDWAY ROAD RECONSTRUCTION SOUTHBOUND LANES FROM BOYINGTON TO KELLER SPRINGS (1,700 LINEAR FEET) ADDISON, TEXAS					
ITEM NO.	ITEM DESCRIPTION	UNIT	UNIT	TOTAL QUANTITY	TOTAL COST
1	MOBILIZATION	LS	\$70,000.00	1	\$70,000.0
2	PREPARE RIGHT OF WAY	STA	\$2,500.00	17	\$42,500.0
	UNCLASSIFIED ROADWAY EXCAVATION	CY	\$10.00	3,000	\$30,000.0
	SAWCUT EXISTING PAVEMENT / DRIVEWAY	LF	\$3.00	5,100	\$15,300.0
5	REMOVE EXISTING CONCRETE PAVEMENT	SY	\$7.50	7.402	\$55,515.0
	REMOVE EXISTING CONCRETE DRIVEWAY	SY	\$10.00	387	\$3,870.0
	10" REINFORCED CONCRETE PAVEMENT (DOWELLED JOINTS)	- SY	\$50.00	7.402	\$370,100.0
	6" CRUSHED STONE BASE	SY	\$6.00	7.624	\$45,744.0
	6" COMPACTED SUBGRADE	SY	\$3.00	8,143	\$24,429.0
	6" INTEGRAL CONCRETE CURB	LF	\$3.00	2,986	\$8,958.0
	MONOLITHIC MEDIAN NOSE	EA	\$1,000.00	8	\$8,000.0
	6" CONCRETE DRIVEWAY	SY	\$25.00	387	\$9,675.0
	MEDIAN BRICK PAVERS	SF	\$7.50	2,628	\$19,710.0
	TEMPORARY 8" ASPHALT (PLACE AND REMOVE)	SY	\$20.00	287	\$5,740.0
	TACK COAT (0.05 GAL/SY)	GAL	\$2.00	14	\$28.7
	ADJUST EXISTING WATER METER COVER	EA	\$300.00	2	\$600.0
	ADJUST EXISTING WATER VALVE COVERS	EA	\$250.00	10	\$2,500.0
	ADJUST EXISTING UTILITY MANHOLES	EA	\$750.00	3	\$2,250.0
	TRIM SHRUBS	EA	\$100.00	5	\$500.0
	TRIM TREE 0" - 6"	EA	\$200.00	4	\$800.0
	TRIM TREE GREATER THAN 6"	EA	\$300.00	6	\$1,800.0
	BLOCK SOD FOR MEDIANS	SY SY	\$5.00	390	\$1,800.0
	BLOCK SODDING FOR PARKWAYS	SY	\$5.00	1,584	\$7,920.0
	24" SOLID WHITE THERMOPLASTIC STOP BAR		\$10.00	80	\$7,920.0
	6" SOLID WHITE THERMOPLASTIC STOP DAK		\$10.00	460	\$1,150.0
	4" WHITE REFLECTIVE TYPE I-W-C CERAMIC BUTTON		\$6.00	435	
	6"x 6" WHITE REFLECTIVE JIGGLE BAR TILES		\$15.00	<u>430</u> 34	\$2,610.0
	WHITE THERMO DIRECTIONAL PAVEMENT MARKINGS	EA	\$15.00		\$510.0
	REMOVE LIGHT POLE ASSEMBLY			4	\$1,000.0
	TEMPORARY 4" WHITE TRAFFIC STRIPE		\$2,000.00		\$2,000.0
	TEMPORARY 4 YOU'LE TRAFFIC STRIPE		\$0.50	1,431	\$715.5
32			\$0.50	7,944	\$3,972.0
	TEMPORARY TRAFFIC SIGNALIZATION AT INTERSECTIONS	EA	\$20,000.00	2	\$40,000.0
	2" PVC CONDUIT FOR LIGHT POLES		\$2.50	1,700	\$4,250.0
	PULL BOXES FOR LIGHT POLES	EA	\$350.00	7	\$2,450.0
	SILT FENCE	LF	\$4.00	830	\$3,320.0
	TEMPORARY CONSTRUCTION ENTRANCE	EA	\$2,500.00	2	\$5,000.0
	MAINTAIN EROSION CONTROL DEVICES	LS	\$5,000.00	1	\$5,000.0
	SIGNS, BARRICADES, TRAFFIC CONTROL	MO	\$30,000.00	5	\$150,000.0
	ADJUST EXISTING UTILITIES	LS	\$25,000.00		\$25,000.0
	ROOT BARRIER	LF	\$5.00	415	\$2,075.0
41	PERMANENT TRAFFIC SIGNALS AT INTERSECTIONS	EA	\$30,000.00	2	\$60,000.0
42	REMOVE/REPLACE LANDSCAPING AND IRRIGATION	LS	\$40,000.00	1	\$40,000.0
				SUB-TOTAL	\$975,667.2
			10 % (CONTINGENCY	\$97,566.7
				TOTAL	\$1,073,233.9

	TABLE 3 ENGINEER'S OPINION OF PROBABLE COST PHASE 3 MIDWAY ROAD RECONSTRUCTION SOUTHBOUND LANES FROM LINDBERG TO BOYINGTON (2,500 LINEAR FEET) ADDISON, TEXAS					
ITÉM NO.	ITEM DESCRIPTION	UNIT	UNIT COST	TOTAL QUANTITY	TOTAL COST	
	MOBILIZATION	LS	\$80,000.00	1	\$80,000.00	
2	PREPARE RIGHT OF WAY	STA	\$2,500.00	25	\$62,500.00	
	UNCLASSIFIED ROADWAY EXCAVATION	CY	\$10.00	4,500	\$45,000.00	
	SAWCUT EXISTING PAVEMENT / DRIVEWAY	LF	\$3.00	7,500	\$22,500.00	
	REMOVE EXISTING CONCRETE PAVEMENT	<u>SY</u>	\$7.50	10,804	\$81,0 <u>30</u> .00	
	REMOVE EXISTING CONCRETE DRIVEWAY	SY	\$10.00	543	\$5,430.00	
	10" REINFORCED CONCRETE PAVEMENT (DOWELLED JOINTS)	SY	\$50.00	10,804	\$540,200.00	
	6" CRUSHED STONE BASE	SY	\$6.00	11,128	\$66,768.00	
	6* COMPACTED SUBGRADE	SY	\$3.00	<u>1</u> 1,885	\$35,655.00	
	6" INTEGRAL CONCRETE CURB	LF	\$3.00	4,041	\$12,123.00	
	MONOLITHIC MEDIAN NOSE	EA	\$1,000.00	11	\$11,000.00	
	6" CONCRETE DRIVEWAY	SY	\$25.00	543	\$13,575.00	
	MEDIAN BRICK PAVERS	SF	\$7.50	4,661	\$34,957.50	
	REMOVE / REPLACE 4" REINFORCED CONCRETE SIDEWALK (5')	SY	\$45.00	322	\$14,490.00	
	TEMPORARY 8" ASPHALT (PLACE AND REMOVE)	SY	\$20.00	392	\$7,840.00	
	TACK COAT (0.05 GAL / SY)	GAL	\$2.00	20	\$39.20	
	REMOVE / REPLACE STORM SEWER INLET	EA	\$5,000.00	5	\$25,000.00	
	ADJUST EXISTING WATER VALVE COVERS	EA	\$250.00	4	\$1,000.00	
	ADJUST EXISTING UTILITY MANHOLES	EA	\$750.00	4	\$3,000.00	
	ADJUST STORM SEWER MANHOLES	EA	\$600.00	1	\$600.00	
	TRIM TREE GREATER THAN 6"	EA	\$300.00	13	\$3,900.00	
	BLOCK SOD FOR MEDIANS	SY	\$5.00	491	\$2,455.00	
	BLOCK SODDING FOR PARKWAYS	SY	\$5.00	1,878	\$9,390.00	
	24" SOLID WHITE THERMOPLASTIC STOP BAR	LF	\$10.00	20	\$200.00	
	6" SOLID WHITE THERMOPLASTIC STRIPES		\$2.50	100	\$250.00	
	4" WHITE REFLECTIVE TYPE I-W-C CERAMIC BUTTON	EA	\$6.00	567	\$3,402.00	
	6"x 6" WHITE REFLECTIVE JIGGLE BAR TILES	EA	\$15.00	55	\$825.00	
	WHITE THERMO DIRECTIONAL PAVEMENT MARKINGS	EA	\$250.00	8	\$2,000.00	
	REMOVE LIGHT POLE ASSEMBLY	EA	\$2,000.00	3	\$6,000.00	
	TEMPORARY 4" WHITE TRAFFIC STRIPE	LF	\$0.50	1,057	\$528.50	
	TEMPORARY 4" YELLOW TRAFFIC STRIPE	LF	\$0.50	8,452	\$4,226.00	
	TEMPORARY TRAFFIC SIGNALIZATION AT INTERSECTIONS	EA	\$20,000.00	1	\$20,000.00	
	2" PVC CONDUIT FOR LIGHT POLES		\$2.50	2,500	\$6,250.00	
	PULL BOXES FOR LIGHT POLES	EA	\$350.00	10	\$3,500.00	
	INLET EROSION PROTECTION SILT FENCE	EA	\$100.00	6	\$600.00	
			\$4.00	840	\$3,360.00	
	TEMPORARY CONSTRUCTION ENTRANCE	EA	\$2,500.00	3	\$7,500.00	
	MAINTAIN EROSION CONTROL DEVICES		\$7,500.00	1	\$7,500.00	
	SIGNS, BARRICADES, TRAFFIC CONTROL	MO	\$30,000.00		\$210,000.00	
	ROOT BARRIER		\$40,000.00	494	\$40,000.00	
	PERMANENT TRAFFIC SIGNALS AT INTERSECTIONS		\$5.00 \$30,000.00	<u>484</u> 2	\$2,420.00 \$60,000.00	
		EA		<u> </u>		
43	REMOVE/REPLACE LANDSCAPING AND IRRIGATION		\$60,000.00	1	\$60,000.00	
					\$1,517,014.20	
			10 % (CONTINGENCY	\$151,701.42 \$1,668,715.62	
		TOTAL				

.

1

ŧ

TABLE 4 ENGINEER'S OPINION OF PROBABLE COST MIDWAY ROAD RECONSTRUCTION - ENTIRE PROJECT BELT LINE ROAD TO KELLER SPRINGS (5,700 LINEAR FEET) ADDISON, TEXAS

ITEM		11111	UNIT COST	TOTAL	TOTAL COST
	ITEM DESCRIPTION		5200.000.00	QUANTITY	\$200,000,00
	MOBILIZATION	LS STA	\$200,000.00	57	\$171,000.00
	UNCLASSIFIED ROADWAY EXCAVATION	CY	\$10.00	13,000	\$130,000.00
4	SAWCUT EXISTING PAVEMENT / DRIVEWAY		\$3.00	17,493	\$52,479.00
5	REMOVE EXISTING CONCRETE PAVEMENT	SY	\$7.50	48,707	\$365,302.50
	REMOVE EXISTING CONCRETE DRIVEWAY	SY	\$10.00	2,585	\$25,850.00
	10" REINFORCED CONCRETE PAVEMENT (DOWELLED JOINTS)	SY	\$50.00	51,089	\$2,554,450.00
	6" CRUSHED STONE BASE	SY	\$6.00	52,621	\$315,726.00
	6" COMPACTEDED SUBGRADE	SY	\$3.00	56,202	\$168,606.00
	6" INTEGRAL CONCRETE CURB MONOLITHIC MEDIAN NOSE	LF EA	\$3.00 \$1,000.00	18,896 23	\$56,688.00 \$23,000.00
	6" CONCRETE DRIVEWAY	SY	\$25.00	2,585	\$64,625.00
	MEDIAN BRICK PAVERS	SF	\$7.50	8,881	\$66,607.50
	REMOVE / REPLACE 4" REINFORCED CONCRETE SIDEWALK (5)	SY	\$45.00	920	\$41,400.00
	TEMPORARY 8" ASPHALT (PLACE AND REMOVE)	SY	\$20.00	2,465	\$49,300.00
	TACK COAT (0.05 GAL / SY)	GAL	\$2.00	123	\$246.50
17	RAILROAD HEADER	LF	\$200.00	162	\$32,400.00
	RELOCATE EXISTING FIRE HYDRANT ASSEMBLY	EA	\$1,200.00	1	\$1,200.00
	REMOVE / REPLACE STORM SEWER INLET	EA	\$2,500.00	13	\$32,500.00
	ADJUST EXISTING WATER METER COVER	EA	\$300.00	2	\$600.00
	ADJUST EXISTING WATER VALVE COVERS	EA	\$250.00	33	\$8,250.00
	ADJUST EXISTING SANITARY SEWER MANHOLES	EA EA	\$600.00 \$750.00	<u>8</u> 12	\$4,800.00
	ADJUST EXISTING UTILITY MANHOLES ADJUST STORM SEWER MANHOLES	EA	\$600.00	1	\$9,000.00
	20' CURB INLET	EA	\$3,000.00	4	\$12,000.00
26	14' CURB INLET	EA	\$2,500.00	9	\$22,500.00
	10' CURB INLET	EA	\$2,500.00	4	\$10,000.00
	SPECIAL INLET OPENING OFF ROAD	EA	\$5,000.00	1	\$5,000.00
	36" RCP STORM SEWER PIPE	LF	\$60.00	334	\$20,040.00
30	30" RCP STORM SEWER PIPE	LF	\$55.00	578	\$31,790.00
31	24" RCP STORM SEWER PIPE	LF	\$45.00	330	\$14,850.00
	21" RCP STORM SEWER PIPE	LF	\$35.00	652	\$22,820.00
	REMOVE EXISTING INLET	EA	\$500.00	13	\$6,500.00
	REMOVE SHRUBS	EA	\$20.00	88	\$1,760.00
	REMOVE TREE 0"- 6"	EA	\$75.00	12	\$900.00
	REMOVE TREE GREATER THAN 6" TRIM SHRUBS	EA EA	\$150.00 \$100.00	10 5	\$1,500.00 \$500.00
	TRIM TREE 0" - 6"	EA	\$200.00	4	\$800.00
	TRIM TREE GREATER THAN 6*	EA	\$300.00	19	\$5,700.00
	BLOCK SOD FOR MEDIANS	SY	\$5.00	881	\$4,405.00
	BLOCK SODDING FOR PARKWAYS	ŠΥ .	\$5.00	7,834	\$39,170.00
42	24" SOLID WHITE THERMOPLASTIC STOP BAR	LF	\$10.00	641	\$6,410.00
	6" SOLID WHITE THERMOPLASTIC STRIPES	LF	\$2.50	1,934	\$4,835.00
	4" WHITE REFLECTIVE TYPE I-W-C CERAMIC BUTTON	EA	\$6.00	2,964	\$17,784.00
	6"x 6" WHITE REFLECTIVE JIGGLE BAR TILES	EA	\$15.00	232	\$3,480.00
	WHITE THERMO DIRECTIONAL PAVEMENT MARKINGS	EA	\$250.00	33	\$8,250.00
	RR CROSSING SYMBOL	EA	\$500.00	6	\$3,000.00
	REMOVE RR ARM ASSEMBLY REMOVE LIGHT POLE ASSEMBLY	EA EA	\$5,000.00	2 26	<u>\$10,000.00</u> \$52,000.00
	TEMPORARY RR ARM ASSEMBLY (SEQUENCING)	EA	\$10,000.00	20	\$20,000.00
	TEMPORARY 4" WHITE TRAFFIC STRIPE	LF	\$0.50	7,451	\$3,725.50
	TEMPORARY 4" YELLOW TRAFFIC STRIPE	LF	\$0.50	41,042	\$20,521,00
	TEMPORARY TRAFFIC SIGNALIZATION AT INTERSECTIONS	ĒA	\$20,000.00	5	\$100,000.00
	2" PVC CONDUIT FOR LIGHT POLES	LF	\$2.50	5,550	\$13,875.00
	PULL BOXES FOR LIGHT POLES	EA	\$350.00	24	\$8,400.00
	INLET EROSION PROTECTION	EA	\$100.00	26	\$2,600.00
	SILT FENCE	LF	\$4.00	2,660	\$10,640.00
	TEMPORARY CONSTRUCTION ENTRANCE	EA	\$2,500.00		\$27,500.00
	MAINTAIN EROSION CONTROL DEVICES	LS EA	\$22,500.00 \$5,000.00	<u> </u>	\$22,500.00
	REMOVE TRAFFIC SIGNALS (MEDIANS) SIGNS, BARRICADES, TRAFFIC CONTROL	MO	\$10,000.00	24	\$240,000.00
	ADJUST EXISTING UTILITIES	LS	\$165,000.00		\$165,000.00
	ROOT BARRIER	LF	\$5.00	2,938	\$14,690.00
	REPLACE LIGHT FOLE ASSEMBLY	EA	\$2,000.00	35	\$70,000.00
the second s	PERMANENT TRAFFIC SIGNALS AT INTERSECTIONS	EA	\$30,000.00	5	\$150,000.00
66	REPLACE RR ARM ASSEMBLY	EA	\$50,000.00	2	\$100,000.00
	TEMPORARY LIGHTING	LS	\$50,000.00	1	\$50,000.00
68	REMOVE/REPLACE LANDSCAPING AND IRRIGATION	LS	\$350,000.00	1	\$350,000.00
				SUB-TOTAL	\$6,075,076.00
			10 %	CONTINGENCY	\$607,507.60
				TOTAL	\$6,682,583.60

Section 7

ì

Based on the information presented within this design report, GBW's conclusions and recommendations are presented below.

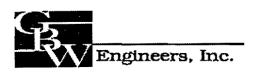
- Extensive research was carried out by GBW regarding the value of using Cement Treated Permeable Base in the pavement section for the reconstruction of Midway Road. It was determined, however, that a crushed limestone base would be more appropriate. (See Appendix A and Appendix C).
- Research was also carried out by GBW regarding the possible installation of a ductbank in conjunction with the pavement reconstruction. This research, which is summarized in Appendix B, lead to the conclusion that the Town should not install a ductbank.
- The pavement distress along the northbound lanes is more pronounced than along the southbound lanes. GBW determined that the cross-slope on the northbound lanes, which is generally less than on the southbound lanes, increases the likelihood that surface water will pond on the pavement surface. Subsequently, a higher infiltration rate of moisture into the subgrade under the northbound lanes, through pavement joints and cracks, has increased the rate of pavement deterioration relative to the southbound lanes. (See Appendix C)
- According to Town staff, \$4.75 million in bond funds is available for this project, which includes payment for engineering services, landscape and irrigation replacement, temporary lighting, in addition to all other project related expenses. An Opinion of Probable Cost prepared by GBW revealed that the available bond money was significantly less than that total funds required to reconstruct the entire project at one time. Consequently, it was apparent that, unless additional funds were found, the project would need to be phased.
- In conjunction with the Town's staff, it was determined that the project will be constructed in three phases which are described in Section 3. The limits of Phase 1, which were set to allow this phase to be constructed with the available bond funds, replaces the pavement in the poorest condition. The phase includes reconstruction of all the northbound lanes and a portion of the southbound lanes from Belt Line Road to Lindbergh Drive.
- Phase 2 replaces the southbound lanes from Boyington Drive to Keller Springs Drive while Phase 3 replaces the southbound lanes from Lindbergh Drive to Boyington Drive.
- Once the construction phasing had been determined, consideration was given to the construction sequencing and traffic control. Section 4 describes three alternatives which were evaluated for two construction scenarios: Belt Line Road to Lindbergh Drive where the northbound and southbound lanes will be reconstructed together, and Lindbergh Drive to Keller Springs Road, where the lanes in one direction will be constructed separately from the lanes in the other direction.
- From Belt Line Road to Lindbergh Drive, the recommended alternative involves removing the median and installing temporary asphalt pavement so that two lanes of traffic can be

maintained in each direction during construction, along with a continuous left-turn lane during most construction steps.

- From Lindbergh Drive to Keller Springs Road, the recommended alternative involves reconstructed each lane of the three lanes in one direction separately without the removal of the median. Two lanes of traffic are still maintained in the direction of flow with this alternative.
- As a supplement to the initial scope of this report, GBW performed an analysis of the existing storm sewer system in Midway Road to determine whether or not it meets current Town of Addison drainage criterial. This analysis concluded that there are several locations, as detailed in Section 5, where the existing system should be modified or extended.
- It is recommended that these storm sewer system improvements be made in conjunction with the Midway Road pavement reconstruction with the exception of the culvert improvements which are scheduled to be made in conjunction with the Arapaho Road Phase 3 project.
- When the funds are allocated for the construction of Phase 1 of Midway Road, the Town will need to authorize GBW to perform Phase Two of the design contract. This work will include completing the preliminary set of construction plans which have been prepared as if the entire project was being constructed at one time.

APPENDIX A

.


~+

à

GENERAL NOTES ON CEMENT TREATED PERMEABLE BASE

•

•

DESIGN MEMO

Date:	April 2, 2001	Job No. 00-238
From:	GBW	Job Name: Midway Road/Arapaho Road
To:	Steve Chutchian, P.E.; Jerry Holder, P.E.	
Re:	General Notes on Cement Treated Perm	eable Base

BASE COURSE NOTES

General

• If construction traffic will be allowed on the permeable base, cement stabilization is generally needed to avoid the substantial cost of constructing a temporary adjacent haul road for side delivery of concrete to the paver.

Aggregate

- Quality of crushed aggregates is the single most important factor for the stability of a permeable base. Aggregate should be stored, handled, and placed in a manner to keep segregation to a minimum.
- The most popular aggregate gradations are AASHTO No. 57 and No. 67, which are characterized by having very little material finer that No. 8 sieve.
- The aggregate material should have at least two mechanically fractured faces to ensure good mechanical interlock. This will require a crushed material.

Permeability

- Cement-treated bases have coefficients of permeability in the range of 3,000 to 15,000 ft per day. Untreated permeable bases range from 500 to 2,000 ft per day.
- Edge-drains are usually filled with the same highly permeable material that is used for the base or a material with even higher permeability.

Cement

- While 200 lb cement per cubic yard has been the amount most generally specified, agencies have used amounts varying from 150 to 300 lb.
- Mixes with 150 lb/c.y. cement content should be restricted to areas subjected to only a few truck hauls over stable subgrade.

- Mixes with 200 lb/c.y. cement content are appropriate for general use (average trucking and subgrade conditions.)
- Mixes with 250 lb/c.y. cement should be used where heavy trucking will occur or where support conditions are questionable.
- From the low to the high cement content, 7 day field compressive strengths varied from 150 to 600 psi; however, cement content rather than strength should be used to select the most appropriate mix.

Water Content

ł

)

ţ

- Water contents for workable mixtures are usually in the range of 100 to 120 lb/yd3. Water content should be based on the contractor's assessment of the mix workability.
- A water/cement ratio at the higher end of the range may encourage the cement paste to flow to points of aggregate contact where its cementing action is needed. The FHWA recommends this design approach.

Pavement Section

- The thickness of permeable bases used has varied from 3 to 6 inches, with 4 inches being the most common. The thickness should be adequate to overcome any construction variances and provide an adequate hydraulic conduit to transmit the water to the edge-drain.
- A minimum resultant slope of 2 percent is recommended wherever possible.

Construction

- Most commonly, the base is compacted by vibratory plates or screeds: The objective is to solidly seat the material.
- Over-rolling can cause degradation of the material with a resulting loss of permeability
- Cement-treated permeable bases are cured by water misting several times a day or by covering with polyethylene sheets for 3 to 5 days.
- The need for curing is one of the least understood aspects of constructing cement treated permeable bases.
- Some agencies are studying the cost-effectiveness of curing; Wisconsin found little difference between material covered with polyethylene and that left exposed.
- During construction, care must be taken to prevent contamination of the permeable base from mud and dirt carried by truck tires. Construction traffic should be kept to a minimum and sharp truck turning should be avoided.

• :-

SEPARATOR NOTES

<u>General</u>

•

- Beneath the permeable base course, a separator or filter layer prevents fine particles in the subgrade soil from infiltrating the open-graded base.
- An asphalt prime coat placed on the stabilized subgrade/subbase would provide additional protection.
- A separator layer can be provided by an aggregate separator layer or by a geotextile.

Aggregate Layer

- The aggregate layer must be strong enough to provide a stable working platform for constructing the permeable base.
- The gradation of this layer must be carefully selected to prevent fines from pumping up from the subgrade into the permeable base.
- The aggregate layer must have a low permeability to deflect infiltrated water over to the edge drain.
- The FHWA recommends the percent of fines passing the No. 200 sieve should not exceed 12 percent and the coefficient of uniformity should be greater the 20 (preferably greater the 40.)
- A minimum thickness of 4 inches is recommended for the aggregate separator layer.

Geotextile

- In subgrades with a high percentage of fines, a geotextile might be a preferred choice.
- The geotextile must have enough strength to survive the construction phase.
- The principal advantage of a geotextile is its filtration capability. A geotextile will allow any rising water, due to capillary action or a rising water table, to enter the permeable base and rapidly drain to the edge-drain system.
- The main disadvantage is if the geotextile becomes clogged, rising water will be trapped under the geotextile, saturating the subgrade and reducing subgrade support.
- Pore openings should be sized to retain larger soil particles and pass smaller soil particles. Large numbers of openings should be provided in case there is some clogging.
- The geotextile should have a permeability several times greater than the subgrade so that any vertical draining water will not be unduly impeded by the geotextile.

- The geotextile should be specified based on performance rather than type (woven or non-woven).
- Geotextiles are subject to degradation when exposed to sunlight for extended periods of time. To prevent this, geotextiles should be placed and covered as quickly as possible.

LONGITUDINAL EDGE-DRAIN NOTES

<u>General</u>

- For crowned pavement, edge-drains are installed along both the inner and outer pavement edge. For uncrowned sections, only one edge-drain is installed at the low side.
- For the longitudinal edge-drain pipe, most agencies use 6-inch diameter flexible corrugated polyethylene tubing (perforated and meeting AASHTO M252.) Rigid PVC pipe (slotted, AASHTO M278-PC50) has also been used but is more expensive. If the pipe is to be installed in trenches that are to be backfilled with asphalt-stabilized permeable material, the pipe must be capable of withstanding the temperature.
- The trench backfill material should be of the same material as the permeable base course to ensure adequate capacity.
- The preferred location for the edge-drain is 2 or 3 feet outside the curb to avoid settlement problems or crushing the collector pipe beneath construction equipment. Sometimes, the permeable base is extended under the shoulder with the edge-drain placed at the outside shoulder edge.
- The suggested minimum pipe size is 4 inches and the minimum slope should be 0.0035 ft/ft.
- Depending on the pipe size, the trench width should be between 8 and 10 inches. The trench should be deep enough to allow the top of the pipe to be located 2 inches below the bottom of the permeable base.
- The edge-drain trench should be lined with a geotextile, but the top of the trench adjacent to the permeable base is left open to allow a direct path for the water into the edge-drain pipe.
- The ability to flush or jet rod the system is important in the maintenance scheme. The edge-drain and outlet pipes must have proper bends (2 to 3-feet radii) and vents to facilitate this operation.
- Videotaping the completed edge-drain with flexible fiber optic equipment is suggested for final acceptance of the project.

Lateral Pipes

• Lateral outlet pipes are rigid PVC or metal. Rigid pipe provides more protection against crushing due to construction operations.

Tel.: (972) 840-1916 / FAX: (972) 840-2156 / E-mail: Info@gbwengineers.com

- The Federal Highway Administration recommends a maximum outlet spacing of 250 feet to ensure rapid drainage. The pipes should be placed on a 3 percent grade with the outlet at least 6 inches above the 10-year design flow in the ditch or storm sewer.
- Pipe outlets into open ditches are usually protected by concrete headwalls and are equipped with rodent screens.

Construction

:

- Edge-drains may be installed before or after construction of the permeable base and concrete surface. This will affect the edge-drain location and geotextile placement.
- Pre-pavement installation of the edge-drain may be necessary in some urban situations, but in general, the option should be given to the contractor.
- Post-pavement installation has several advantages: less threat of pipe damage and trench cave-ins due to construction traffic, less susceptibility to bad weather delays, and better line and grade because these are taken off the previously constructed concrete pavements.

<u>Maintenance</u>

- Flushing and rodding of the edge-drain system should be done on a routine schedule.
- Edge-drain outlets and pipe systems should be inspected at least once a year using flexible fiber optic video equipment to determine their condition.
- If regular maintenance is not done, the pavement section will become flooded, increasing the rate of pavement damage.

DESIGN NOTES

- When rainfall events occur that are greater than the design storm, the permeable base will fill with water and excess water will simply run off on the pavement surface. After the storm event, the permeable base will drain as designed.
- A time to drain 50 percent of the drainable water of 1 hour is recommended for the highest class roads with the greatest amount of traffic. For most other highways and freeways, a time to drain 50 percent of the drainable water of 2 hours is recommended.
- Construction traffic on the completed base course is the single most important parameter in the selection of the type of permeable base to be used.

CONSTRUCTION NOTES

• Central plant mixing of permeable cement-treated base course is essentially the same as that for conventional concrete.

• The City may want to construct a test strip of the base course to determine which curing method to employ as well as which method of compaction should be used. Requirements for moist curing should be investigated to see if they might be eliminated without substantial loss of performance under actual job conditions.

ì

The FHWA recommends that a control strip be constructed at the beginning of construction so that the combination of aggregate materials and construction practices be tested, and if necessary, adjusted to produce a stable permeable base with adequate drainage characteristics. A minimum length of 500 feet is recommended, and this section can become part of the finished roadway if found to be acceptable.

J:\WPDOCS\PROJECTS\ADDISON\00-238\DESIGNMEMO.CTPB

APPENDIX B

•

.

DUCTBANK MEMO

1919 S. Shiloh Rd., Suite 530, LB 27, Garland, TX 75042

May 7, 2001
Steve Chutchian, P.E. cc: Jerry Holder, P.E. (HNTB)
Bruce Grantham
Ductbank

This memo provides a summary to a meeting I recently had with Catherine Lisenbee, Utility Franchise Coordinator for the City of Irving, and Mike Lisenbee, Construction Manager for Future Telecom Inc.

- Irving has adopted Ordinance No. 7533 (attached) which governs right-of-way construction.
- Ms. Lisenbee communicates the ordinance requirements with all franchise utility companies that plan to install utilities within the City's right-of-way.
- Irving investigated the viability of the City installing ductbanks with street construction projects but rejected this notion for the following reasons:
 - -- After reviewing House Bill 1777, the City attorney ruled that Irving would assume liability for future maintenance of the ductbank and for potential damages if fiber service were disrupted due to problems with the ductbank.
 - -- HB 1777 does not allow the ductbank owner to profit from the sale or lease of ducts.
- HB 1777 no longer allows cities to collect permit fees for reviewing and processing requests from franchise utility companies to install ducts within their right-of-ways.
- Irving is currently having discussions with two companies that install and sell ducts to determine their interest in installing ductbanks in conjunction with future City street projects.

Another approach Irving is considering involves contacting all known utility companies that operate in the region and informing them that no future franchise utility construction will be allowed in a right-of-way after the street is constructed; consequently, sufficient ducts must be installed by and for these utility companies prior to construction. The downside of this approach is that new utility companies may enter the region in the future and require service along the right-of-way.

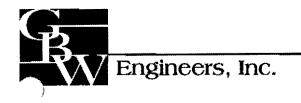
According to Ms. Lisenbee, many businesses today require that comprehensive fiber facilities be available in the right-of-way near their buildings. The availability of these facilities assists in the economic development of commercial sectors of the City like Las Colinas.

Mr. and Ms. Lisenbee recommended that any ductbank installation be designed by a qualified firm that is currently working in the industry and knows the requirements of the fiber companies such as:

Memo, Page 2 Mr. Steve Chutchian May 7, 2001

- Manholes are typically spaced 800' to 1,000' apart unless a Central Bell Office is located along the corridor, in which case more manholes are required. Three or four manholes are typically installed at each location so that the ducts can be separated and routed through different manholes.
- For security purposes, the fiber companies prefer to have their own 3' x 5' x 4' (deep) manholes installed and reserved for the use of one company; however, larger 8' x 6' x 4' (deep) manholes are used on ductbanks where the future users are not known and the manholes will need to be shared. These larger manholes will have security partitions installed inside the manhole and, whenever a utility needs to access the manholes, all the utilities with services in that manhole are called so that their inspectors can be onsite when the manhole is accessed.
- Service laterals are typically installed from the ductbank to the back of curb at the manhole locations.
- The type of duct used in ductbanks can vary; a form of ribbed PVC pipe is typically used for fiber.
- The size of ducts used for fiber has increase from 1.25" to 1.5" diameter recently.
- Mr. and Ms. Lisenbee suggested that 12 6" ducts would be a good choice for a ductbank where the future users are unknown. A 6" duct would allow for several smaller 1.5" fiber ducts inside in addition to providing a larger duct for other types of cable such as telephone or electric.
- Ms. Lisenbee supported Addison's proposal to have a ductbank installed prior to street construction.

Fort Worth also has also taken a progressive approach to franchise utility management within its right-of-ways. Mr. Mitch Montgomery at (817) 998-0937 is the utility coordinator. Ms. Lisenbee and Mr. Montgomery are members of a Right-of-Way Management committee which meets every second Thursday at 2 p.m. in Irving's City Hall. This committee is open to City representatives who have questions regarding the issues summarized in this memo.


£.,

<u>APPENDIX C</u>

• •• •• •• •

•

LETTER REPORT FOR MIDWAY ROAD PAVEMENT SECTION

May 21, 2001

Mr. Steve Chutchian, P.E. Town of Addison Post Office Box 9010 Addison, Texas 75001

Re: Letter Report for Midway Road Pavement Section

GBW No. 238

Dear Steve:

This letter report summarizes data from an in-depth field inspection of the Midway Road pavement condition performed by GBW staff and the enclosed draft geotechnical report prepared by Alpha Testing, Inc. In addition, this report includes a review of the pavement section alternatives included in the Alpha Testing report and an opinion of probable cost for two of the pavement sections that utilize alternative base materials.

Description of Problem

Alpha Testing, Inc. strategically selected boring locations in order to determine how subsurface conditions were affecting the level of pavement distress. Following an analysis of the field inspection and soil boring data, we have the following observations:

- The pavement distress along the northbound lanes is more pronounced than the southbound lanes.
- The worst section of the southbound lanes is in the vicinity of the railroad crossing near the Belt Line Road end of the project where a sag is located.
- The cross-slope on the northbound lanes, which is mostly in the 1/8 to 1/4-inch per foot range, is significantly less than the southbound lanes, where it is mostly in the 1/4 to 1/2-inch per foot range.
- The difference between the northbound and southbound lane cross-slopes appears to have resulted from an attempt to match the existing ground at the east and west right-of-way lines when the current Midway Road pavement was designed in 1982.
- The flatter cross-slope on the northbound lanes increases the likelihood that surface water will pond or runoff slowly, resulting in a higher infiltration rate into the subgrade through pavement joints and cracks.
- In addition to rainfall, sprinkler systems in the medians and adjacent parkways are other sources of water which can infiltrate the subgrade.
- Flat longitudinal slopes along some sections of Midway Road also slow that rate of storm water runoff; for example, in the vicinity of the railroad crossing.
- Poor surface drainage appears to be the primary reason why pavement distress has been more rapid along most of the northbound lanes when compared with the southbound lanes.
- The poor condition of many pavement joints, some of which may have been widened when the pavement was milled and resealed in 1994, provide conduits for surface water to reach the subgrade.
- The plasticity index of the underlying clay soil is generally in the 18 to 55 range, which indicates a high potential to shrink and swell.
- The soil borings do not provide evidence of a ground water problem.
- Only eight of the 22 soil borings showed evidence of lime in the subgrade, which suggests that the lime stabilized subgrade was not uniformly constructed.
- A combination of moisture penetration over time and nonuniform lime stabilization during construction has probably reduced the bearing capacity of the subgrade.

- The load transfer capability of the transverse contraction joints has been insufficient to support the heavy traffic volume, resulting in a difference in pavement elevation at the front and back ends of adjacent slabs.
- This difference, which results in a bump at the pavement joints on the northbound lanes in particular, has also resulted in a transverse crack at the midpoint of some slabs.
- Exhibit A contains a summary of data from the field inspection and the geotechnical report.

Comparable Pavement Alternatives

We received a copy of your letter to Jerry Holder dated March 23, 2001 in which you authorize the design team to proceed with pavement section Alternative 3 which included Portland Cement Concrete (PCC) on a Cement Treated Permeable Base (CTPB) with edge drains. Pursuant to our previous discussions, it is understood that the Town intends to use the same type of pavement section for both the Midway and Arapaho Road projects, given that the depths of the concrete and base layers may differ.

In a similar manner to the Terra-Mar, Inc. report for Arapaho Road, the Alpha Testing report for Midway Road analyzes several alternative pavement sections. These alternatives, which assume a 30-year project life, are summarized in the following section.

 If the load transfer between joints is through <u>aggregate interlock</u> and the subgrade is <u>compacted</u>; either

11.5 inches	PCC
6 inches	Crushed Limestone Base
6 inches	Compacted subgrade

OR

10.5 inches	PCC
6 inches	СТРВ
6 inches	Compacted subgrade

If the load transfer between joints is through <u>aggregate interlock</u> and the subgrade is <u>lime stabilized;</u> either

11 inches	PCC
6 inches	Crushed Limestone Base
6 inches	Lime stabilized subgrade

OR

10 inches	PCC
6 inches	СТРВ
6 inches	Lime stabilized subgrade

If the load transfer between joints is through <u>dowels</u> and the subgrade is <u>compacted</u>; either

10 inches	PCC
6 inches	Crushed Limestone Base
6 inches	Compacted subgrade
(DR

9 inches	PCC
6 inches	СТРВ
6 inches	Compacted subgrade

If the load transfer between joints is through <u>dowels</u> and the subgrade is <u>lime stabilized</u>; either

9.5 inches	PCC
6 inches	Crushed Limestone Base
6 inches	Lime stabilized subgrade

OR

9 inches	PCC
6 inches	CTPB
6 inches	Lime stabilized subgrade

Review of Alternatives

æ

Upon a review of the pavement sections listed above, it is evident that each of the following alternatives reduce the required PCC thickness by ½ to 1 inch:

The use of <u>CTPB</u> in lieu of <u>Crushed Limestone Base</u>.

Given the Town's selection of CTPB for the Arapaho Road project, it is anticipated that CTPB will also be the base material of choice for the Midway Road project.

The use of <u>lime stabilized subgrade</u> in lieu of <u>compacted subgrade</u>.

In Section 5.4 of the Terra-Mar report, it states that 'If construction proceeds during wet weather, a lime stabilized subgrade in lieu of a compacted subgrade may be desirable in order to provide a more stable and less moisture sensitive working platform.' A representative with Jackson Brothers, the contractor on the Post and Paddock paving project for the City of Grand Prairie, strongly recommended that a lime stabilized subgrade be used with CTPB due to constructability problems which they experienced on Post and Paddock with a compacted subgrade. If the Town of Addison is willing to consider lime stabilization on Midway Road, it could be bid as an alternate to a compacted subgrade.

The use of dowels in lieu of aggregate interlock for load transfer between joints.

In Section 5.5 of the Terra-Mar report, it states that 'Steel dowels should be used for load transfer at all joints transverse to traffic.' This recommendation applies to transverse contraction joints which they indicate should typically be placed at 15 feet on-center. The Terra-Mar report does not provide an alternative pavement section for load transfer through aggregate interlock between joints. Locally, aggregate interlock is most commonly used on municipal roadways; nevertheless, both load transfer options could be bid as alternates on Midway Road.

Cost Comparison of Alternatives

If lime stabilization is bid as an alternate to a compacted subgrade, and dowels are bid in lieu of aggregate interlock for load transfer between joints, the contractors that bid the Midway Road project will determine the cost effectiveness of these alternatives. If one or more or these alternatives is not acceptable to the Town, we would be pleased to do the research necessary to prepare an opinion of probable cost for each alternative.

Although it is anticipated that the pavement section on Midway Road will incorporate CTPB, Exhibit B provides an opinion of probable cost for informational purposes to compare it with a pavement section that incorporates Crushed Limestone Base. This comparison, which indicates a \$866,805 increase in cost to use CTPB, is contained in that attached spreadsheet.

CTPB Design Memo

Given the limited use of CTPB as a base material for urban pavements in the metroplex, we have prepared a design memo based on our research of this material. The attached design memo on CTPB has been prepared following conversations with a supplier, a contractor, other local and state agency representatives, and other engineers.

This memo is to provides an evaluation of CTPB along with technical data for consideration prior to developing consistent pavement section design standards and specifications for the Midway and Arapaho Road projects.

Fly Ash

The Town of Addison's staff has expressed an interest in using fly ash in the mix design of the PCC pavement for the Midway and Arapaho Road projects. Mr. Michael Caldarone, P.E. with TXI indicated that fly ash is used in concrete paving by number of local cities including Dallas, Fort Worth Arlington, Plano and Grand Prairie, and by TxDOT on the majority of their concrete paving projects. I also contacted the City of Garland's construction manager and confirmed that they permit fly ash in concrete paving mix designs, although the amount is limited to the lesser of 15% of the cement weight or 100 lbs.

Mr. Caldarone furnished our office with sample concrete mix designs, with and without fly ash, which achieve 3,000 psi in 3 days and 7 days respectively. These mix designs are attached for you information. If the Town wishes to utilize fly ash on the subject projects, we can include appropriate limits for its use in the technical specifications.

After reviewing the enclosed geotechnical report for Midway Road and this letter, please contact me if you any comments. I will then request that Alpha Testing finalize their report.

Very truly yours,

Brace R. Grantham, P.E. President

Attachments

cc: Jerry Holder, HNTB Dave Lewis, Alpha Testing

BG/gg J:\WPDOCS\PROJECT\$\ADDISON\00-238\Design Repor\Chutchian.ltr

APPENDIX D

-

ALPHA TESTING GEOTECHNICAL REPORT

REMEDIAL GEOTECHNICAL EXPLORATION

3

on

MIDWAY ROAD RECONSTRUCTION Beltline Road to Keller Springs Road Addison, Texas ALPHA Report No. 00988

Prepared for:

GBW ENGINEERS, INC. 1919 Shiloh Road, Suite 530, LB 27 Garland, Texas 75042 Attention: Mr. Bruce R. Grantham, P.E. April 2, 2001

Prepared By:

ALPHA TESTING, INC. 2209 Wisconsin Road, Suite 100 Dallas, Texas 75229

2

4

2209 Wisconsin St., Suite 100 Dallas, Texas 75229 972/620-8911 - 972/263-4937 (Metro) FAX: 972/406-8023

April 2, 2001

GBW ENGINEERS, INC. 1919 Shiloh S. Road, Suite 530, LB 27 Garland, Texas 75042 Attention: Mr. Bruce R. Grantham, P.E.

> Re: Remedial Geotechnical Exploration MIDWAY ROAD RECONSTRUCTION Beltline Road to Keller Springs Road Addison, Texas ALPHA Report No. 00988

Attached is the report of the remedial geotechnical exploration performed for the project referenced above. This study has been authorized by Mr. Bruce Grantham, P.E. on December 28, 2000 and performed in accordance with ALPHA Proposal No. GT 7371 dated June 27, 2000.

This report contains results of field explorations and laboratory testing and an engineering interpretation of these with respect to available project characteristics. The results and analyses have been used to develop recommendations for remedial design and reconstruction of a segment of Midway Road in Addison, Texas.

ALPHA TESTING, INC. appreciates the opportunity to be of service on this project. If we can be of further assistance, such as providing materials testing services during construction, please contact our office.

> DAVID A. LEWIS 47040

Sincerely yours,

ALPHA TESTING, INC.

David A. Lewis, P.E. Mangger of Engineering Services

Jim L. Hillhouse, P.E. President

DAL/JLH/dal Copies: (3) Client

TABLE OF CONTENTS

ОП

MIDWAY ROAD RECONSTRUCTION Beltline Road to Keller Springs Road Addison, Texas ALPHA Report No. 00988

Ĺ

.....

l

ź

1

1.0	PURI	POSE AND SCOPE
2.0	PROJECT CHARACTERISTICS	
3.0	FIELD EXPLORATION	
4.0	LAB	ORATORY TESTS
5.0	GEN	ERAL SUBSURFACE CONDITIONS
6.0	DESIGN RECOMMENDATIONS4	
**	6.1	Pavement.46.1.1Pavement Subgrade Preparation.56.1.2Pavement Section Options.56.1.3Pavement Specifications.7
	6.2	Drainage11
7.0 ·	GENI	ERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS
	7.1	Site Preparation and Grading
	7.2	Fill Compaction9
	7.3	Groundwater
APPE	NDIX	
A-1	Methods of Field Exploration General Location – Figure 1 Boring Location Plans – Figures 2 – 7	
B-1	Methods of Laboratory Testing Moisture Density Relationship – Figures 8 & 9 Mechanical Lime Stabilization – Figure 10 Record of Subsurface Exploration Key to Soil Symbols and Classifications	

1.0 PURPOSE AND SCOPE

The purpose of this remedial geotechnical exploration is to evaluate some of the physical and engineering properties of subsurface materials at the subject study area with respect to design and reconstruction of a segment of Midway Road in Addison, Texas. The field exploration has been accomplished by securing subsurface samples (including concrete pavement) from widely spaced test borings performed along the study area. Engineering analyses have been performed from results of the field exploration and results of laboratory tests performed on representative samples. The analyses have been used to develop recommended pavement section options for the subject reconstructed roadway.

Also included is an evaluation of the site with respect to potential construction problems and recommendations concerning earthwork and quality control testing during construction. This information can be used to verify subsurface conditions and to aid in ascertaining all construction phases meet project specifications.

Recommendations provided in this report have been developed from information obtained in test borings depicting subsurface conditions only at the specific boring locations and at the particular time designated on the logs. Subsurface conditions at other locations may differ from those observed at the boring locations. The scope of work is not intended to fully define the variability of subsurface materials that may be present on the study area.

The nature and extent of variations between borings may not become evident until construction. If significant variations then appear evident, our office should be contacted to re-evaluate our recommendations after performing on-site observations and tests.

Professional services provided in this geotechnical exploration have been performed, findings obtained, and recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. The scope of services provided herein does not include an environmental assessment of the site or investigation for the presence or absence of hazardous materials in the soil, surface water or groundwater.

ALPHA TESTING, INC. is not responsible for conclusions, opinions or recommendations made by others based on this data. Information contained in this report is intended for exclusive use of the Client (and their design representatives) and design of the specific pavement outlined in Section 2.0. Recommendations presented in this report should not be used for design of any other pavements except those specifically described in this report. Further, subsurface conditions can change with passage of time. Recommendations contained herein are not considered applicable for an extended period of time after the completion date of this report. It is recommended our office be contacted for a review of the contents of this report for construction commencing more than two (2) years after completion of this report.

Recommendations provided in this report are based on our understanding of information provided by the Client about characteristics of the project. If the Client notes any deviation from the facts about project characteristics, our office should be contacted immediately since this may

materially alter the recommendations. Further, ALPHA TESTING, INC. is not responsible for damages resulting from workmanship of designers or contractors and it is recommended that the owner retain qualified personnel to verify work is performed in accordance with plans and specifications.

2.0 PROJECT CHARACTERISTICS

It is proposed to reconstruct a segment of Midway Road located between Beltline Road and Keller Springs Road in Addison, Texas. A site plan illustrating the general outline of the study area is provided as Figure 1, the Location Plan, in the Appendix of this report. At the time the field exploration was performed, the study area was developed with the existing concrete roadway.

Present plans provide for reconstruction of the existing pavement. The existing pavement has experienced some distress. The distress is generally in the form of depressed areas adjacent to the existing pavement joints and generally occur in the direction of traffic flow from the pavement joints. Joints in the pavement were noted to be unusually large (up to about ½" wide) and in some areas it appears surface water is entering the pavement subgrade through these wide joints. At the north end of the study area (north of Borings 21 and 22; north-bound lane) in particular, water was actually noted emerging from the joints immediately after passage of large trucks. In general, transverse cracking was noted across the pavement panel near their midpoint in areas where significant pavement distress was noted.

3.0 FIELD EXPLORATION

Subsurface conditions along the study area have been explored by drilling 22 test borings in general accordance with ASTM D 420 to a depth of 10 ft using standard rotary drilling equipment. The approximate location of each test boring is shown on the Boring Location Plans, Figures 2-7, enclosed in the Appendix of this report. Some borings were drilled in distressed areas while others were drilled in non-distressed areas for comparison. Details of drilling and sampling operations are briefly summarized in Methods of Field Exploration, Section A-1 of the Appendix.

Soil and rock (shaly limestone) types encountered during the field exploration are presented on Record of Subsurface Exploration sheets included in the Appendix of this report. The boring logs contain our Field Technician's and Engineer's interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are approximate and the actual transition between strata may be gradual.

Fill materials have been encountered at some boring locations as will be discussed in Section 5.0. There may be fill in other borings than noted or at other locations, but could not be readily identified. Composition of the fill has been evaluated based on samples retrieved from 6-inch maximum diameter boreholes. It is anticipated this fill was placed and compacted

during construction of the existing concrete roadway. However, since no records were made available of fill placement, compaction or uniformity, subsurface conditions immediately adjacent to test borings could be substantially different than conditions observed in test borings.

4.0 LABORATORY TESTS

Selected samples of the subsurface materials have been tested in the laboratory to evaluate their engineering properties as a basis in providing recommendations for pavement design and earthwork construction. A brief description of testing procedures used in the laboratory can be found in Methods of Laboratory Testing, Section B-1 of the Appendix. Individual test results are presented either on Record of Subsurface Exploration sheets or on summary data sheets also enclosed in the Appendix.

5.0 GENERAL SUBSURFACE CONDITIONS

In general, the existing concrete pavement is underlain by soils derived from the Austin Chalk fornation. Within the 10-ft maximum depth explored during this study, subsurface materials consist generally of clay (CH) underlain by calcareous clay (CL) and deeper shaly limestone. In the southern and central portions of the study area (Borings 1-16), the existing pavement sectiongenerally consists of about 8 inches of Portland cement concrete overlying lime treated subgrade soils. (It should be noted that lime treated subgrade soils were *not* encountered in all of these boring locations.) In the northern portion of the study area (Borings 17-22), the existing pavement section generally consists of 6.5 to 7 inches of Portland cement concrete overlying a clayey (CH/CL) subgrade. The letters in parenthesis represent the soils' classification according to the Unified Soil Classification System (ASTM D 2488). More detailed stratigraphic information is presented on the Record of Subsurface Exploration Sheets attached to this report.

Most of the subsurface materials are relatively impermeable and are anticipated to have a slow response to water movement. Therefore, several days of observation will be required to evaluate actual groundwater levels within the depths explored. Also, the groundwater level at the study area is anticipated to fluctuate seasonally depending on the amount of rainfall, prevailing weather conditions and subsurface drainage characteristics.

During field explorations, free groundwater has been noted in Borings 1-4 on drilling tools and in open boreholes upon completion at depths of 4.5 to 8 ft. Free groundwater was not observed in the other borings during drilling or in the other open boreholes upon completion. In our opinion, the current groundwater level on the study area may be located below the bottom of the borings and water within the depths explored may be "perched" groundwater which has percolated downward through desiccation cracks in the clayey type soils. It is not uncommon to detect seasonal groundwater either from natural fractures within the clay matrix, near the soil/rock interface or from fractures in the rock, particularly after a wet season. If more detailed groundwater information is required, monitoring wells or piezometers can be installed.

Further details concerning subsurface materials and conditions encountered can be obtained from the Record of Subsurface Exploration sheets provided in the Appendix of this report.

6.0 DESIGN RECOMMENDATIONS

The following design recommendations have been developed on the basis of the previously described Project Characteristics (Section 2.0) and Subsurface Conditions (Section 5.0). If project criteria should change, our office should conduct a review to determine if modifications to the recommendations are required. Further, it is recommended our office be provided with a copy of the final plans and specifications for review prior to construction.

6.1 Pavement

Clay or calcareous clay encountered near the existing ground surface will probably constitute the subgrade for the new pavement. Therefore, it is recommended these materials be improved prior to construction of pavement. Due to the wide spacing of the borings, division of the study area into areas with similar subgrade conditions was not possible. Delineation of areas with similar subgrade conditions, if required, should be performed during construction after the subgrade material has been exposed. The specific type of improvement procedures required in given pavement areas will be dependent upon the type of subgrade material present after final subgrade elevation has been achieved.

Calculations used to determine the required pavement thickness are based only on the physical and engineering properties of the materials and conventional thickness determination procedures. Related civil design factors such as subgrade drainage, shoulder support, cross-sectional configurations, surface elevations, reinforcing steel, joint design and environmental factors will significantly affect the service life and must be included in preparation of the construction drawings and specifications, but were not included in the scope of this study. Normal periodic maintenance will be required for all pavement to achieve the design life of the pavement system.

Please note, the recommended pavement section options provided below are considered the minimum necessary to provide satisfactory performance based on the expected traffic loading. In some cases, City minimum standards for pavement section construction may exceed those provided below.

The following design information has been provided by the Client:

- New pavement will consist of Portland-cement concrete and the design life is 30 years.
- Daily traffic based on 1999 information for the study area is about 51,000 vehicles per day.

- The projected daily traffic volume by Year 2020 will be up to about 60,000 vehicles per day.
- It is anticipated the new pavement will be subject to significant truck traffic.
- Truck traffic will be about 20 percent of the daily traffic volume. Therefore, the design traffic used for the new pavement is 15.118,000 18-kip equivalent axle load applications for a 30-year design life.

6.1.1 Pavement Subgrade Preparation

Due to the relatively heavy truck traffic expected, it is recommended a non-erodable base material be provided immediately below the Portland-cement concrete pavement. The non-erodable base material could consist of either a crushed limestone base material or a cement treated permeable base. The non-erodable base should be supported on an improved subgrade consisting of either a re-compacted subgrade or a mechanically lime stabilized subgrade. It should be noted that a geotextile fabric (e.g., Marafi 180N or equivalent) should be provided between the improved subgrade soils and the cement treated permeable base to prevent fines from the improved soils from penetrating into the permeable base material. If a permeable base is used, the subgrade must be carefully graded (i.e., no birdbaths and minimum slope of 1.5 percent) to provide positive flow of percolated water through the permeable base to collection points at the extreme perimeter of the pavement. Collected water at the perimeter of the pavement should be drained to an appropriate receptacle.

If the subgrade soils are mechanically lime stabilized, it is recommended lime stabilization procedures extend at least 1 ft beyond the edge of the pavement to reduce effects of seasonal shrinking and swelling upon the extreme edges of pavement. The soil-lime mixture should be compacted to at least 95 percent of standard Proctor maximum dry density (ASTM D 698) and within the range of 0 to 4 percentage points above the mixture's optimum moisture content. In all areas where hydrated lime is used to stabilize subgrade soil, routine Atterberg-limit tests should be performed to verify the resulting plasticity index of the soil-lime mixture is at/or below 15.

Mechanical lime stabilization of the pavement subgrade soil will not prevent normal seasonal movement of the underlying untreated materials. Normal maintenance of pavement should be expected over the pavement design life.

6.1.2 Pavement Sections Options

California Bearing Ratio (CBR) tests performed on composite samples from the test borings indicate the CBR value for the existing clay subgrade soils will be about 3 whereas the CBR value for the same material after mechanical lime

stabilization would increase to about 20. Using the above values and assuming normal traffic for a 30-year project life, the following pavement sections are recommended if load transfer between joints is through *aggregate interlock*:

Compacted Subgrade

11.5 inches	Portland-cement concrete
6 inches	crushed limestone base material
6 inches	compacted subgrade

OR

10.5 inches	Portland-cement concrete
6 inches	cement treated permeable base
6 inches	compacted subgrade

Lime Stabilized Subgrade

11 inches	Portland-cement concrete
6 inches	crushed limestone base material
6 inches	lime stabilized subgrade

OR

10 inches	Portland-cement concrete
6 inches	cement treated permeable base
6 inches	lime stabilized subgrade

If dowels are provided for load transfer at the joints in the new pavement, the following pavement section options are provided:

Compacted Subgrade

Ĺ

10 inches	Portland-cement concrete
6 inches	crushed limestone base material
6 inches	compacted subgrade

OR

9 inches	Portland-cement concrete
6 inches	cement treated permeable base
6 inches	compacted subgrade

Lime Stabilized Subgrade

9.5 inches	Portland-cement concrete
6 inches	crushed limestone base material
6 inches	lime stabilized -subgrade

OR

9 inches	Portland-cement concrete
6 inches	cement treated permeable base
6 inches	lime stabilized subgrade

6.1.3 Pavement Specifications

Pavement should be specified, constructed and tested to meet the following requirements:

- 1. Portland-Cement Concrete: Texas SDHPT Item 360. Specify a minimum flexural strength of 650 lbs per sq inch at 28 days. Concrete should be designed with 5 + 1 percent entrained air.
- 2. Crushed Limestone Base Material: Texas SDHPT Item 247, Type A or B, Grade 2 or better. The material should be compacted to a minimum 95 percent of standard Proctor maximum dry density (ASTM D 698) and within three percentage points of the material's optimum moisture content.
- 3. Cement Treated Permeable Base Material: Cement treated permeable base should have a minimum hydraulic conductivity of 3,000 feet per day after compaction. Permeable base material shall consist of coarse aggregate with no fine aggregate (sand, etc.) and shall be treated with 6 percent Portland cement by dry weight of the aggregate. The material should be compacted to a minimum 95 percent of standard Proctor maximum dry density (ASTM D 558) and within three percentage points of the material's optimum moisture content. The material supplier shall submit an acceptable mix design for approval.
- 4. Lime Stabilized Subgrade: Texas SDHPT Item 260. An estimated 3 and 8 percent of hydrated lime (by dry soil weight) should be applied to existing calcareous clay and clay soils, respectively, which have been scarified to a depth of 6 inches. The actual amount of lime required should be confirmed by additional laboratory tests prior to construction.

.....

- a. The soil-lime mixture should be compacted to at least 95 percent of standard Proctor maximum dry density (ASTM D 698) and within the range of 0 to 4 percentage points above optimum moisture. The moisture content of the subgrade should be maintained until the pavement surface is placed.
- b. In all areas where hydrated lime is utilized to stabilize the subgrade soil, routine Atterberg-limit tests should be performed prior to completion of construction to assure the resulting plasticity index of the soil-lime mixture will be at/or below 15. Gradation, Atterberg-limits and density tests should be performed at a frequency of 1 test per 5000 sq ft of pavement.
- 5. Re-compacted Subgrade: On-site materials should be scarified to a depth of at least 6 inches and re-compacted to at least 95 percent of standard Proctor maximum dry density (ASTM D 698) and within the range of 1 percentage point below to 3 percentage points above the material's optimum moisture content. The moisture content of the subgrade should be maintained until the pavement surface is placed. Density tests should be performed at a frequency of 1 test per 5000 sq ft of pavement.

7.0 GENERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS

Variations in subsurface conditions could be encountered during construction. To permit correlation between test boring data and actual subsurface conditions encountered during construction, it is recommended a registered Geotechnical Engineer be retained to observe construction procedures and materials.

Some construction problems, particularly degree or magnitude, cannot be anticipated until the course of construction. The recommendations offered in the following paragraphs are intended, not to limit or preclude other conceivable solutions, but rather to provide our observations based on our experience and understanding of the project characteristics and subsurface conditions encountered in the borings.

7.1 Site Preparation and Grading

All areas supporting pavement should be properly prepared.

After completion of the necessary stripping, clearing, and excavating and prior to placing any required fill, the exposed subgrade should be carefully inspected by probing and testing. Any undesirable material (organic material, wet, soft, or loose soil) still in place should be removed.

The exposed subgrade should be further inspected by proof-rolling with a heavy pneumatic tired roller, loaded dump truck or similar equipment weighing approximately 10 tons to check for pockets of soft or loose material hidden beneath a thin crust of possibly better soil.

Proof-rolling procedures should be observed by the project geotechnical engineer or his representative.

Any unsuitable materials exposed should be removed and replaced with well-compacted material as outlined in Section 7.2.

Slope stability analysis of embankments (natural or constructed) was not within the scope of this study. Trench excavations should be braced or cut at stable slopes in accordance with Occupational Safety and Health Administration (OSHA) requirements, Title 29, Items 1926.650-1926.653 and other applicable building codes.

7.2 Fill Compaction

Calcareous or sandy materials with a plasticity index below 25 should be compacted to a dry density of at least 95 percent of standard Proctor maximum dry density (ASTM D 698) and within the range of 1 percentage point below to 3 percentage points above the material's optimum moisture content.

Clay soils with a plasticity index equal to or greater than 25 should be compacted to a dry density between 95 and 100 percent of standard Proctor maximum dry density (ASTM D 698). The compacted moisture content of the clays during placement should be within the range of 0 to 4 percentage points above optimum. Clay fill should be processed and the largest particle or clod should be less than 6 inches prior to compaction.

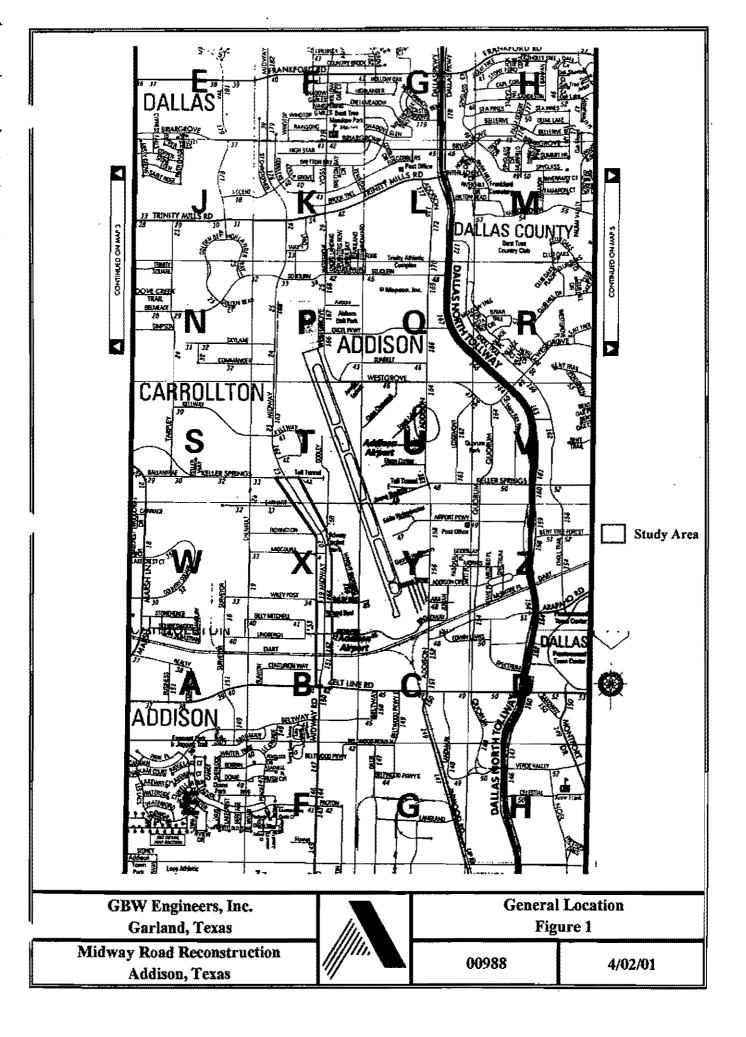
Limestone or other rock-like materials used as random fill should be compacted to at least 95 percent of standard Proctor maximum dry density. The compacted moisture content of limestone or other rock-like materials used as random fill is not considered crucial to proper performance. However, if the material's moisture content during placement is within 3 percentage points of optimum, the compactive effort required to achieve the minimum compaction criteria may be minimized. Individual rock pieces larger than 6 inches in dimension should not be used as fill. However, if rock fill is utilized within 1 ft below the bottom of the pavement, the maximum allowable size of individual rock pieces should be reduced to 3 inches.

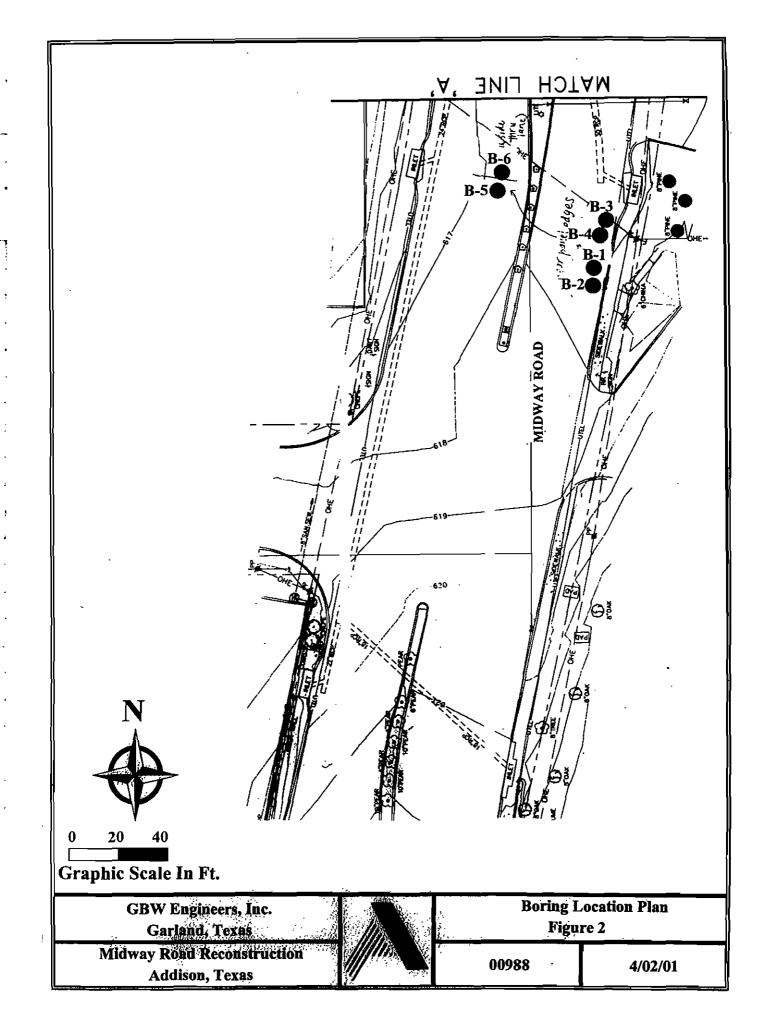
APPENDIX

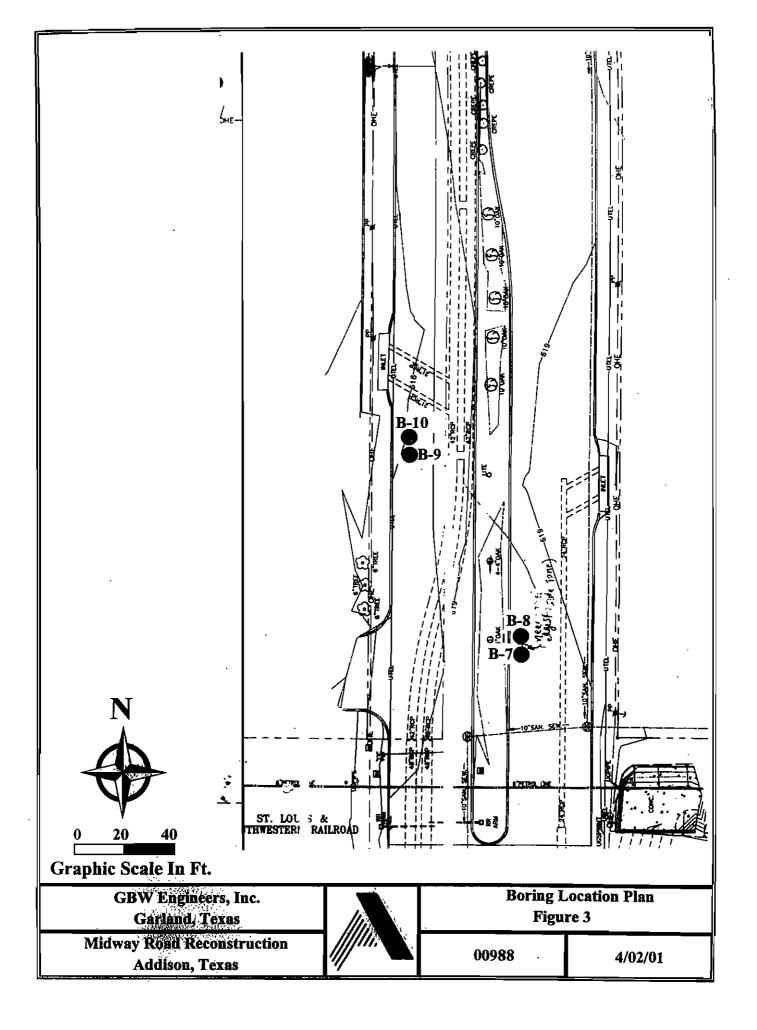
7

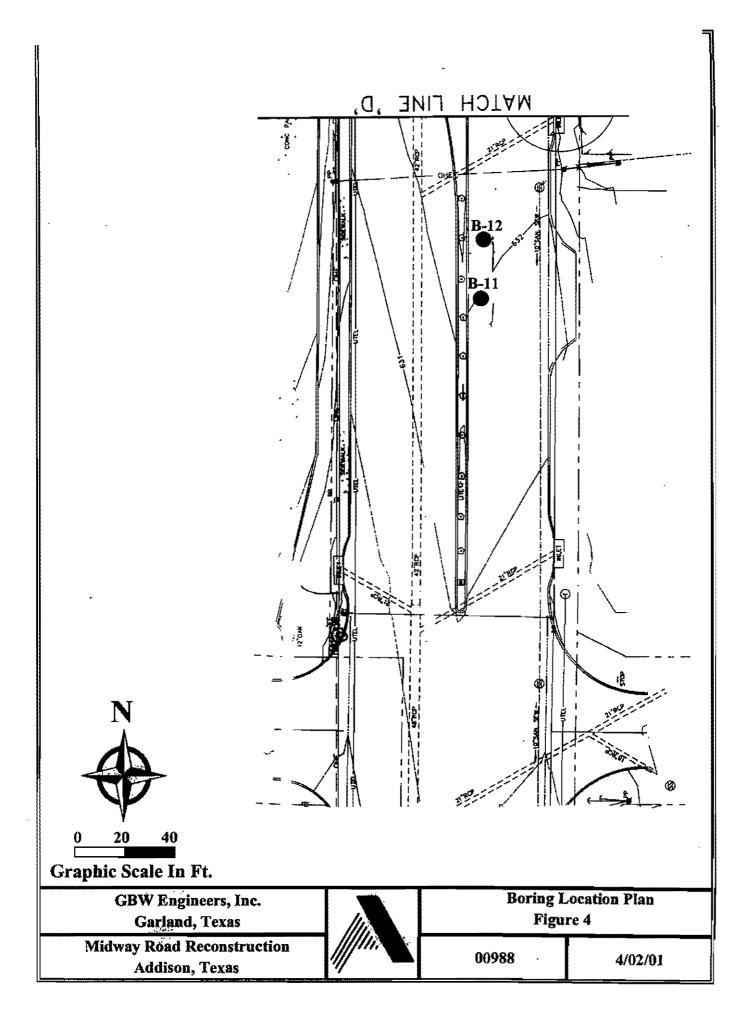
ļ

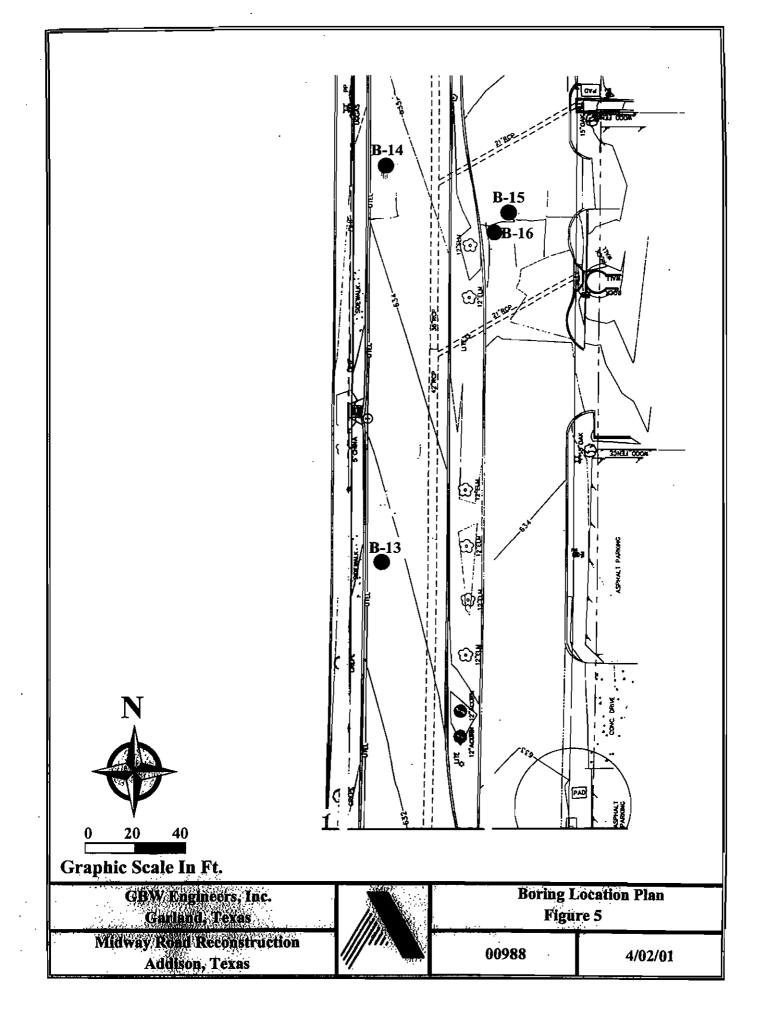
ţ

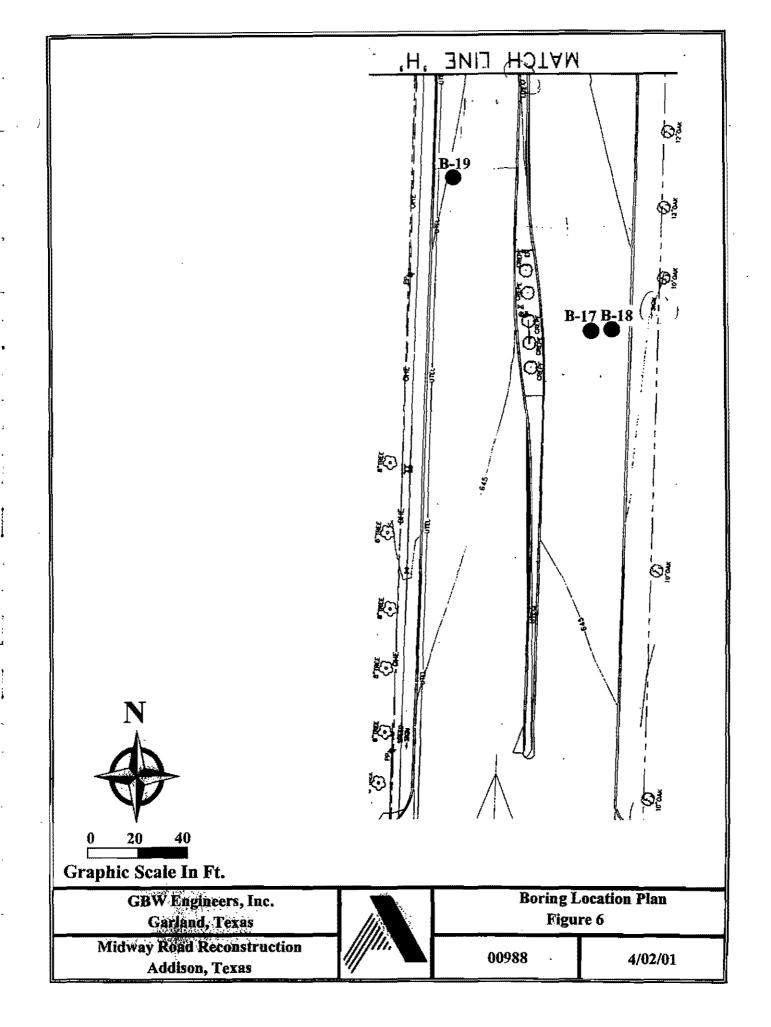

A-1 METHODS OF FIELD EXPLORATION

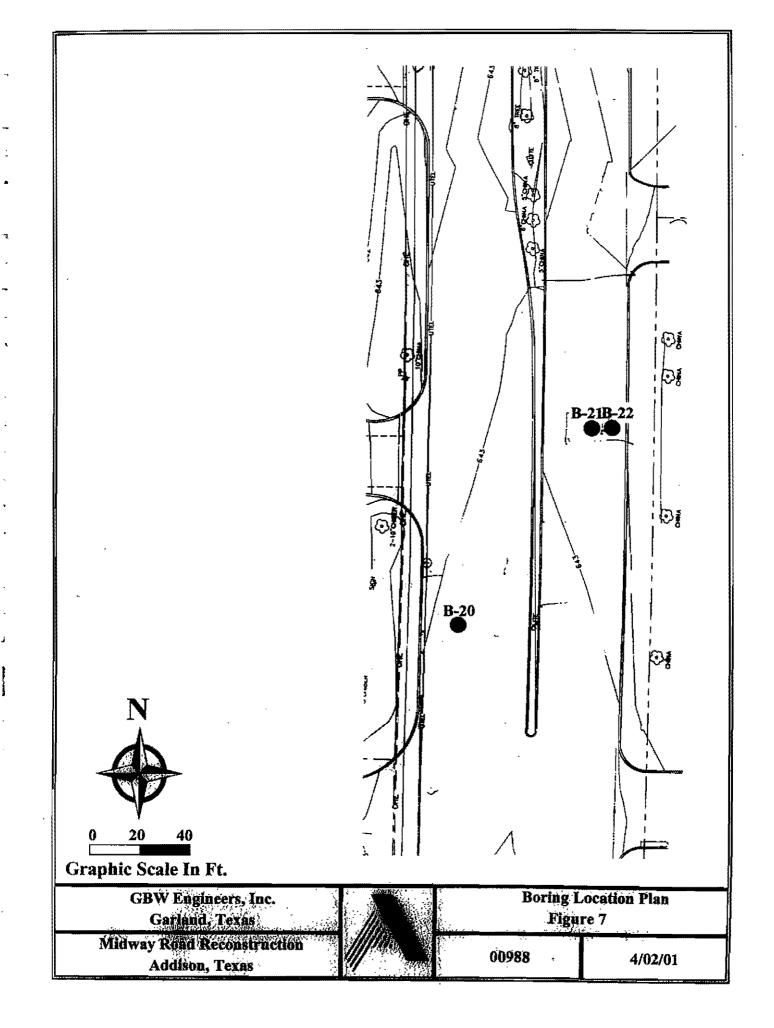

Using standard rotary drilling equipment, a total of 22 test borings have been performed for this geotechnical exploration at the approximate locations shown on the Boring Location Plans, Figures 2-7. The test boring locations have been staked by either pacing or taping and estimating right angles from landmarks which could be identified in the field and as shown on the site plans provided during this study. The location of test borings shown on the Boring Location Plan is considered accurate only to the degree implied by the method used to locate the borings. The surface elevations provided on the Record of Subsurface Exploration sheets have been obtained by plotting the boring locations on the site plans and interpolating the surface elevation. Surface elevations given on the boring logs are approximate.

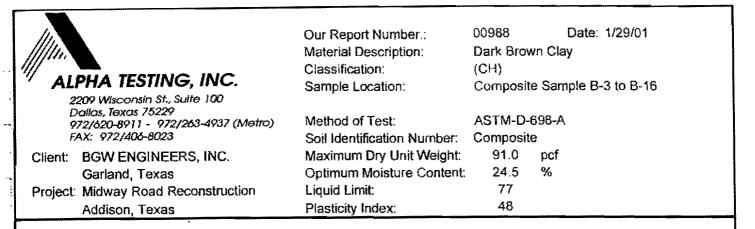

Relatively undisturbed samples of the cohesive subsurface materials have been obtained by hydraulically pressing 3-inch O.D. thin-wall sampling tubes into the underlying soils at selected depths (ASTM D 1587). These samples have been removed from the sampling tubes in the field and examined visually. One representative portion of each sample has been sealed in a plastic bag for use in future visual examinations and possible testing in the laboratory.

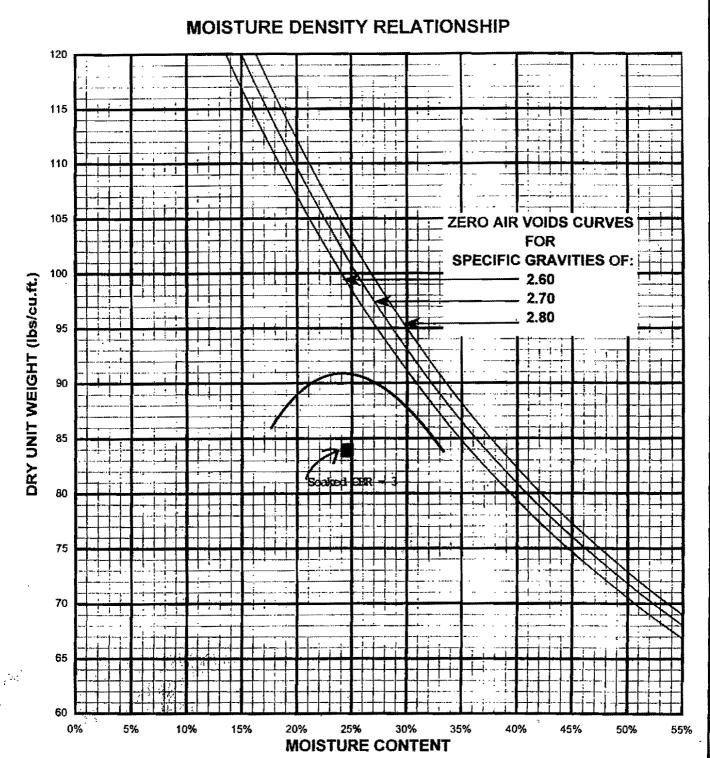

Modified Texas Cone Penetration (TCP) tests have also been completed in the field to determine the apparent in-place strength characteristics of the rock type materials. A 3-inch diameter steel cone driven by a 170-pound hammer dropped 24 inches is the basis for Texas State Department Public Transportation strength correlations. of Highways and In this case. ALPHA TESTING, INC. has modified the procedure allowing the use of a 140-pound hammer dropping 30-inches for completion of the field test. Depending on the resistance (strength) of the materials, either the number of blows of the hammer required to provide 12 inches of penetration, or the inches of penetration of the cone due to 100 blows of the hammer are recorded on the field logs and are shown on the Record of Subsurface Exploration sheets as TCP (reference: Texas State Department of Highways and Public Transportation, Bridge Design Manual), using the modified procedure.


Logs of all borings have been included in the Appendix of this report. The logs show visual descriptions of all soil and rock (shaly limestone) strata encountered using the Unified Soil Classification System. Sampling information, pertinent field data, and field observations are also included. Soil and rock samples not consumed by testing will be retained in our laboratory for at least 30 days and then discarded unless the Client requests otherwise.

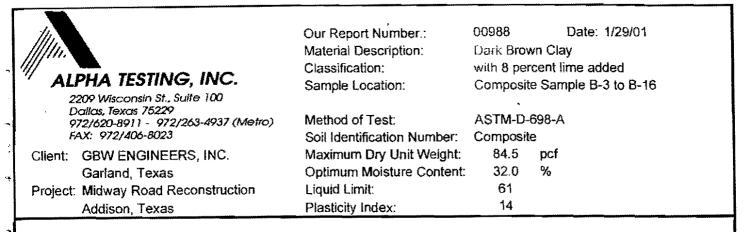


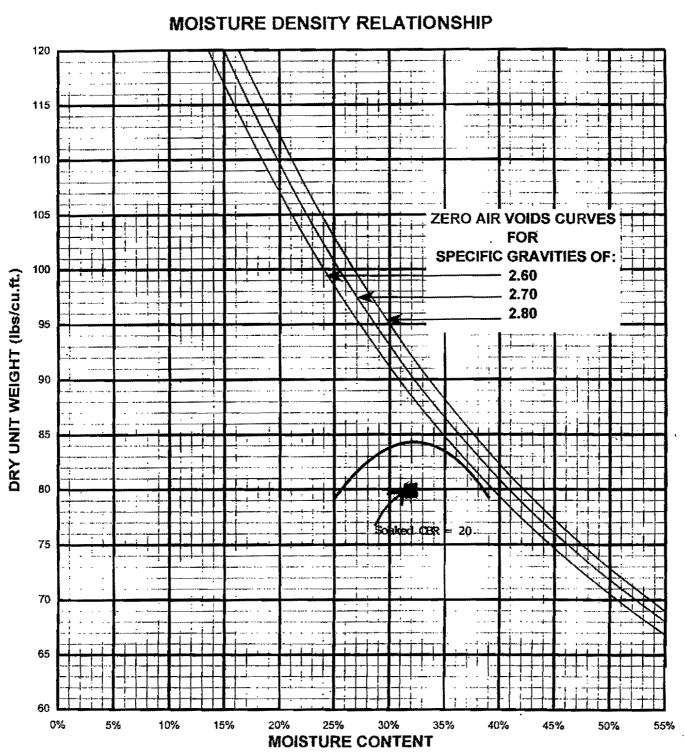


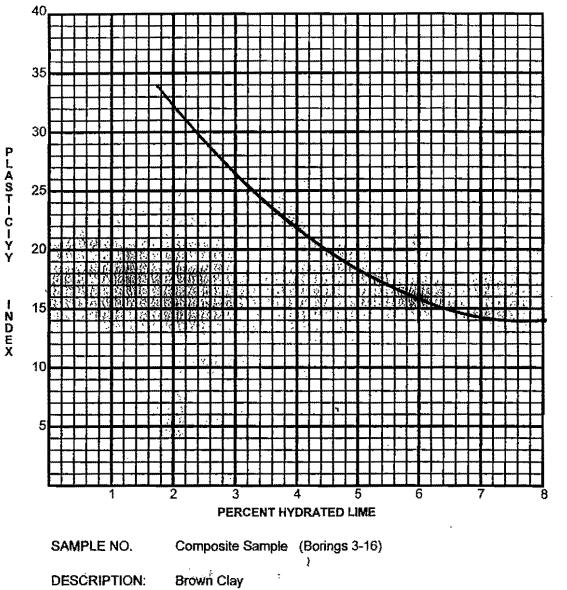




ALPHA Report No. 00988


B-1 METHODS OF LABORATORY TESTING


Representative samples are inspected and classified by a qualified member of the Geotechnical Division and the boring logs are edited as necessary. To aid in classifying the subsurface materials and to determine the general engineering characteristics, natural moisture content tests (ASTM D 2216), Atterberg-limit tests (ASTM D 4318) and dry unit weight determinations are performed on selected samples. In addition, unconfined compression (ASTM D 2166) and pocket-penetrometer tests are conducted on selected soil samples to evaluate the soil shear strength. Results of all laboratory tests described above are provided on the accompanying Record of Subsurface Exploration sheets or on summary data sheets as noted.



--: ,

MECHANICAL LIME STABILIZATION

2209 Wisconsin St., Suite 100 Dalias, Texas 75229 972/620-8911 - 972/263-4937 (Metro) FAX: 972/406-8023

CLIENT:	LABORATORY TEST:
GBW ENGINERRS, INC.	LIME SERIES
GARLAND, TEXAS	Figure 10
PROJECT NAME	ALRHA PROJECT NODATE:
MIDWAY ROAD RECONSTRUC	TION (* 00988**** April 3, 2001
n a stall second and the second s	

.

•

2

1 .

,

۲

ALPHA TESTING, INC. 2209 Wisconsin St., Suite 100 Dallas, Texas 75229 (972) 620-8911

Arc.	nt GBW ENGINEERS,			lob N<	»			00988	}				
Pro	ect Name MIDWAY ROAD RECO	ONSTRUC	CTION)rawn	Ву			AM		· · · · · · · · · · · · · · · · · · ·	
Pro	ject Location ADDISON,	TEXAS			#	Approv	/ed By			DA	Ľ		
	DRILLING AND SAMPLING INF e Started <u>1-21-01</u> Hammer Wt.	······							TEST	DATA			
Dat	e Completed <u>1-21-01</u> Hammer Dro	ρ			in.		or lows/Ft)						
Dril	Foreman EDI Spoon Samp	le OD			in.	Sieve	ar or Bio y						
Ins	Dector Rock Core D	ia	~		in.	0 Sil	Tes ist (i	a.	¢				
Bor	ing Method CFA Shelby Tube	00	<u>s</u>	1	_ in.	No. 200	tration tion Te	(Total	Compressive	eter			
 	SOIL CLASSIFICATION	×			<i>u</i>	Percent Passing	Texes Cone Penetration Test Standard Penetration Test (BI	Soll Suction Test (Total).	hed Com	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Water Content %	Liquíd Límit Plastic Limit Plasticity Index
	SURFACE ELEVATION 618±	STRATUM DEPTH	DEPTH SCALE	SAMPLE NO.	SAMPLE TYPE	Percent	Texes C Standar	Soll Suc	Unconfined (Strength Tons/Sq Ft.	Pocket Tons/Sc	Dry Uni bs./cu.	Water C	
1	Brown very stiff CLAY(CH) with some sand and gravel. 8" of concrete at surface.		0 -										
		2'		* *	ST					2.2		39	LL=76 PL=27 PI=49
Ŧ;	Reddish Brown very stiff CLAY(CH/CL) with some sand, calcareous nodules and gravel.			2	ST					4.5+		26	
	hard 2'-3'. stiff below 5'.		-	3	ST					2.7		26	LL=53 PL=20
-				4	ST					2.2		25	PI=33
		<u> </u>	6-	5	ST					1.7		24	
	Yan firm CALCAREOUS CLAY(CL) with some silty sand and Limestone gravel. -stiff 6'-7'.			6	ST					1.0		28	LL=33 PL=15
			8	7	ST		*			0.7		27	PI=18
				8	ST					0.5		28	
			10	9	ST					0.5		46	
	SOTTOM OF TEST BORING AT 10'.												
1			12										
-	SAMPLER TYPE	BSER	VATI	ONS	•								
S1 C7	SAMPLER TYPEGROUNDWATER OBSERVATIONSBORING METHODSS - STANDARD PENETRATION TESTAT COMPLETION5 FT.HSA - HOLLOW STEM AUGERSST - SHELBY TUBEAT COMPLETION5 FT.CFA - CONTINUOUS FLIGHT AUGERCA - CONTINUOUS FLIGHT AUGERAFTERHRS.FT.DC - DRIVEN CASINGSTCP- TEXAS CONE PENETRATION TESTWATER ON RODS8 FT.MD -MUD DRILLING												

	ient	GBW KI			E	loring	No			B-2					
į	Architect/Engineer	h	······································										}		
{	Project Name	MIDWAY	ROAD REC	ONSTRUC	TION		Ľ	Tawn	By			AM			
ſ	Project Location	······	ADDISON,	TELAS			*	vpprov	eu by						
		LING AND SAI 1-21-01					_ lbs.				TEST	DATA		1	
1	Date Completed	1-21-01	Hammer Dro	b			in.		/s/Ft		a construction of the second se				
(Drill Foreman	EDI	Spoon Samp	ole OD			- in.	eve	Blow						
1	Date Started Date Completed Drill Foreman Inspector Boring Method	J77 173 1%	Rock Core D	lia. 	3		^{IN} .	is o	Te est (р. Б	2				
ł	Boring Method	СРА	Sheiby Tube				······	o. 20	ation on T	Tota	essi	5			×
	SOIL C	LASSIFICATIO	N	5				Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soll Suction Test (Total),	ed Compressive Ft.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Waight Ibs./cu. ft.	Content %	Liquid Limit Plastic Limit Plasticity Index
	SURF/	ACE ELEVATIO	N		王出	L L		ent	dard dard	Suct	S and	PS/sq	Ξ.	ŭ	= = = = = = = = = = = = = = = = = = =
		618±		STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE TYPE	Perc	Tex: Stan	Soil	Unconfined C Strength Tons/Sq Ft.	100 Loui	Q_√ Bs./	Water	그먹으
	Brown hard	CLAY (CH) wit	th some	1	0 -	1	ļ				1	1			
-	sand and gr	avel. oncrete at 1	aurfaan												
	-7.75" OI C	Oncrete at a	surrace.			11	ST) 	4.5+		33	LL=68
-					-			ļ							PL=37
				21	2-			Í							PI=31
	Reddish Bro	wn and Tan	very]]]				
7	stiff CLAY(CH/CL) with reous nodule	some			2	ST	Į				4.5+		26	
	gravelha	rd 2'-3'.				<u> </u>									
Н	-stiff belo	w 5'.				3	ST					3.5		22	
	•				<u>_</u>	<u> </u>		İ							
_					-]				<u> </u>			
_	•			51		4	ST				1	2.5	l	20	
_				+ = -		<u> </u>					ļ				
					-	5	ST	ĺ				2.2		21	
					6-	1						ļ	*		
-		LCAREOUS CLA ilty sand and					ST	[1 0		24	
	limestone g	ravel.				6	31		- 1			1.2		24	
	-very stiff -stiff 6'-7		•			1					*			ļ	
-		-			-	7	ST	į.			{	0.5		29	
					8-	1]	ĺ							
1				-		8	ST				1	0.5		30	
1						1°	01					0.5		30	
						9	ST					0.5		32	
-					10 -	1		[}				
1	BOTTOM OF T	EST BORING ?	AT 10'.		-	1									
-					-										
-						1								ĺĺ	
				·											
•	0 A 4 6 1 2 1 1				12 DUNDW/	TEO /	19CE0	VATI	INC		1	BORÍNG	ACTO	 3173	
	SAMPLER 1 SS - STANDARD		EST	*	COMPLE		- LADEC	5 F			HSA - I	HOLLOW	STEM	AUG	
	ST - SHELBY TUB CA - CONTINUOU		Ż	AF			HRS.		Γ. Γ.		CFA - (CONTINU Driven (JOUS F	ELIGH GS	T AUGERS
	TCP- TEXAS CON				TER ON			8 F				IUD DRIL			

•

The second se

:

ALPHA TESTING, INC. 2209 Wisconsin St., Suite 100 Dallas, Texas 75229 (972) 620-8911

Architect/Engineer	NICENTI	TTON									•	
Project Name MIDWAY ROAD RECO Project Location ADDISON,	TRYAS							· · · · · · · · · · · · · · · · · · ·				
				······ ·	(p. p	1			DATA		Lg	······································
DRILLING AND SAMPLING INF Date Started <u>1-21-01</u> Hammer Wt				- Ibs.		-		1691	UATA			
Date Completed <u>1-21-01</u> Hammer Dro	p	······		in.		VS/F						
Drill Foreman BDI Spoon Samp	ile OD			- :n.	Sieve		IL.					
Inspector Rock Core D Soring Method CFA Shelby Tube	μα. 	3		- ^{III.} in.		n Te est	ра , с	2				
Sonng weurou CFA Greby 1000	·····					natio On T	Tota	4558,	ter			X
SOIL CLASSIFICATION	W				Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total), pF	Unconfined Compressive Strength Tons/Sq Ft.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Water Content %	Liquid Limit Plastic Limit Plasticity Index
SURFACE ELEVATION	STRATUM DEPTH	王의	SAMPLE NO.	SAMPLE TYPE	Sent	as C Jást	Suc	angt s/Sq	ket F 3/5g	Unit /cu.	er C	328
618±	DEP	DEPTH SCALE	NO.	SAN	Per	Tex Star	Soll	255	Ton Ton	چې ۳	War	
Brown hard Lime Treated CLAY(CH) with some sand and calcareous nodules and gravel. -8" of concrete at surface.		0	1	ST					4.5+		38	LL=57 PL=36 PI=21
	3'	2	2	ST					4.0		31	
Brown very stiff CLAY(CH) with some sand, calcareous nodules and gravel.			з	ST			×				30	
-reddish brown below 4'.] -stiff below 5'.		4	4	ST					3.2		22	
	6'		5	ST					1.7		22	
Tan firm CALCAREOUS CLAY(CL) with some silty sand and limestone gravel.			6	ST					1.5		25	
-stiff 6'-7'.			7	ST		1			0.5		26	
an An An An			8	ST					0.7		32	
-			9	ST					0.5		35	
BOTTOM OF TEST BORING AT 10'.												
-		12 -										
SAMPLER TYPEGROUNDWATER OBSERVATIONSBORING METHODSS - STANDARD PENETRATION TESTAT COMPLETION5.5 FT.HSA - HOLLOW STEM AUGERSST - SHELBY TUBEAT COMPLETION5.5 FT.CFA - CONTINUOUS FLIGHT AUGERCA - CONTINUOUS FLIGHT AUGERAFTERHRS.FT.DC - DRIVEN CASINGSTCP- TEXAS CONE PENETRATION TESTWATER ON RODS8 FT.MD -MUD DRILLING												-

.

ļ

j

ALPHA TESTING, INC. 2209 Wisconsin St., Suite 100 Dallas, Texas 75229 (972) 620-8911

ent GBW ENGINEERS,												
Architect/Engineer	ACCOUNTS	ኣምዮረጎእፕ										
Project Name <u>MIDWAY ROAD RECO</u> Project Location <u>ADDISON</u> ,	MEYAC	FION										
					, p.		****					
Date Started DRILLING AND SAMPLING INF				_ lbs.				151	DATA			
Date Completed <u>1-21-01</u> Hammer Drop	- <u> </u>			in.		vs/F						
Drill Foreman EDI Spoon Sampl Inspector Rock Core Di				in.	200 Sieve	ast o (Blo	ц Ц					1
Boring Method CFA Shelby Tube	0D	3		in.	ŝ	est Test	11. E	ķ				
		[Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total),	Compressive	ometer	H H	*	mit îmit Index
SOIL CLASSIFICATION	M		u	ш	Percent Passing No.	Cone Pe Id Pene	ction T	hed Co	Pockst Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Content	Líquid Limit Plastic Limit Plasticity Inde
SURFACE ELEVATION 618±	STRATUM DEPTH	DEPTH SCALE	SAMPLE NO.	SAMPLE TYPE	Percent	Texas (Standa	Soil Su	Uncontined (Strength Tons/Sq Ft.	Pocket Tons/S	Dry Un Ibs./cu.	Water	בקים איייי שקים
- Brown hard CLAY(CH) with some		0 -	1									
sand and calcareous nodules and gravel.										ļ		
- 7.75" of concrete at surface.	5		1	ST					4.5+		31	
		_							-			
		2 -		1					*			
	a	1										
	31	-	2	ST					4.0		33	
Reddish Brown and Tan very		-	Į						1			
] stiff CLAY(CH/CL) with some] _	3	ST					4.0		25	
silty sand, calcareous nodules			1		ĺ							
and gravelhard 3'-4'.			1	<i></i>								
		-	4	ST					3.2		20	
-			5	ST					3.2		23	
<u></u>	<u> </u>	<u> </u>	<u> </u>							1		
- Tan firm CALCAREOUS CLAY(CL)			1							[
with some silty sand and limestone gravel.			6	ST					0.7		26	
			<u> </u>	1	[
			7	ST					0.7	-	29	
_		8	<u> </u>	-								
-				ST				ſ	0.5		20	
		-	8	51					0.5		30	
			1	1								
-			9	ST				1	0.5		28	
		10-	<u> </u>									
- BOTTOM OF TEST BORING AT 10'.		-	1									
-		-	1									
-			1					ļ				
		-	1	1								
		12 -	1					L				
SAMPLER TYPE SS - STANDARD PENETRATION TEST		OUNDW/							Boring Hollow			ERS
ST - SHELBY TUBE				4 HRS.	.5 F	т. т.		CFA - (CONTINU	JOUS F	LIGH	T AUGERS
CA - CONTINUOUS FLIGHT AUGER TCP- TEXAS CONE PENETRATION TEST		TER TER ON			7 F				Driven (1UD Drii		10	
	***	1 MII WIX	2132670									

.

.ient	GBW ENGINEERS,	INC.			B	loring lob No	No			<u>B-5</u>			
Architect/Engineer Project NameM	משמ הנחס ענשהד	ONSTRIC	TION										
Project NameM Project LocationM	ADDISON,	TEXAS								DA			
	NO CAMPLING IN						•			DATA			
Date Started	01 Hammer Wt	•			_ IDS.		Ê						
Date Completed 1-21	-01 Hammer Dro	op			in. in		ws/						
Drill Foreman EDI	Spoon Sam				ín.	200 Sieve	(Blo	βF					
Inspector Boring MethodCFP	Hock Core L	. on	3		in.	S S	e Te	þ, p	82	17 a.	•		
Boring Method CFF		· · · · · · · · · · · · · · · · · · ·		1		1	stratio Ition 1	: (Tota	Compressive	iëter		*	dex dex
SOIL CLASSIF	ICATION	- <u>×</u>				Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total),	ned Com	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Content 9	Líquid Límit Plastic Limit Plasticity Index
SURFACE ELE		STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE TYPE	Percent	Texas C Standar	Soil Suc	Unconfined (Strength Tons/Sq Ft.	Pocket Tons/Sq	Dry Uni Ibs./cu.	Water C	295 191 295
Brown hard Lime T			0 -										
CLAY(CH) with som	e sand and	[1						1			
calcareous nodule -8" of concrete a	s. F curface		_	l 1	ST					4.5+		37	LL=56
-8" OI CONCIECE A	C BULLICC.	ł	-	1						-			PL=35
		2'											PI=21
Dark Brown very s	Liff CLAV (CR)	<u>+ </u>	2-		1]				ł	ž		
with some sand.		-	-	1						1			
-brown with calca	reous nodules		-	2	ST					3.0	-	40	
below 4'. tannish brown be	Jow B!		-	4	DI DI								
	TOH O 1		-	1					Í				
			4-	1	1						j		
-				1					Í		-		
-				1				•				1	
				3	ST				1	3.2	3	29	•
			-	{					1				
									1				
]	6-]	(.		
-			-										
-				4	ST	Í				3.2		28	-
-								1					
			-								ĺ		
-			8-	<u> </u>	1				-				
] _						1	l		ĺ	
· · · · · · · · · · · · · · · · · · ·			-	5	ST	}			-	3.0		28	
н ис.			- 1		51							40	
- ·			-	1									
			10-	ļ	1]				[
BOTTOM OF TEST BO	RING AT 10'.	ţ	7	1									•
			-	1							* **		
• •				ſ	[-			
₽-				ł	H-THE						, T		
, start and a			12 -		<u> </u>	<u> </u>			`.		, ,		°
SAMPLER TYPE	······	GR	OUNDW/	TER C	DBSER	VATI	ONS	•		BORING			
SS - STANDARD PENETRA	ATION TEST	AT	COMPLE	TION	Γ	RY F	Т.			HOLLOW			SE R S IT AUGER
ST - SHELBY TUBE CA - CONTINUOUS FLIGH	T AUGER	AF	TER		HRS.	F	Т.		DC -	DRIVEN	CASIN		II AVUEN
TCP- TEXAS CONE PENET		W۸	TER ON	RODS	NC	NE F	Т.		MD -N	IUD DRI	LING		

• •

ALPHA TESTING, INC. 2209 Wisconsin St., Suite 100 Dallas, Texas 75229 (972) 620-8911

RECORD OF SUBSURFACE EXPLORATION

ient GBW ENGINEERS , I												
Architect/Engineer	¥ #329137. == = =											
Project Name MIDWAY ROAD RECON	ISTRUC	TION		L	rawn	Вү иод Вы			DA			
Project Location ADDISON, T				····· ,	, thuo	eu uy			******			
DRILLING AND SAMPLING INFO Date Started <u>1-21-01</u> Hammer Wt.				_ lbs.	Ī			TEST	DATA			
Date Completed 1-21-01 Hammer Drop				in.		vs/F						
Drill ForemanSDI Spoon Sample	OD _			- in.	eve	St or Blov	н.					
Inspector Rock Core Dia. Boring Method CFA Shelby Tube O	·	3		_ IN. in	200 Sieve	est (!, pF	ę				
Boring MethodCFA Shelby Tube U	·ບ	3			ਲ	100	fota	essi	Br			×
SOIL CLASSIFICATION	×				Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total),	ed Compressive Ft.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Water Content %	Liquid Limit Plastic Limit Plasticity Index
SURFACE ELEVATION	<u></u> Ž	Ξщ	5 E	Ĩ	aut	U S S S S S S S S S S S S S S S S S S S	Suct	Sq tin	Sq P	Ĩ	Ŭ k	388
617±	STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE TYPE	Perci	Texa Stan	Soil	Unconfined C Strength Tons/Sq Ft.	Pock Tons	104	Matt	"""
- Brown very Dense SAND(SP) with		0 -										
<pre>some gravel and clay. - 8" of concrete at surface.</pre>												
			1	ST	13				-		30	
_									ł			
_ _	2'_	2	<u> </u>									
- Brown very stiff CLAY(CH) with	1		ļ]								
] some sand. - tannish brown with calcareous												
nodules and gravel below 4'.			2	ST				1.2	2.7	80	34	
-tannish brown below 8'.												PL=30 PI=50
-												FT=20
		4 -										
-				ļ								
-			3	ST					3.7		26	
		 بیس:	-						1			
-		_			ĺ							
-1		6	 							}		
			[-				
			4	ST					3.0		24	TT ##
and the second se				9. 1					3.0	ĺ	24	LL=66 PL=24
1		·										PI=42
		8 —										
-		-										
1		-										
			5	ST					2.2		29	
•••												
		10										
- BOTTOM OF TEST BORING AT 10'.		10				(1				
-												
;1												
•		12 -				downood a state of the state of						
SAMPLER TYPE	GRO		TER C)BSER	VATIO	ONS	•	لیــــــــــــــــــــــــــــــــــــ	BORING	METHO)D	
SS - STANDARD PENETRATION TEST		COMPLE			RY F			HSA - I	IOLLOW	STEM	AUG	•
ST - SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER	AFT			HRS.	F				Continu Driven (T AUGERS
TCP- TEXAS CONE PENETRATION TEST		TER ON I			NB F1				UD DRIL			

-

.

í i

•

ALPHA TESTING, INC. 2209 Wisconsin St., Suite 100 Dallas, Texas 75229 (972) 620-8911

lient	GBW ENGINBERS,												
Architect/Engineer		ASTERNIT'	ማምሞለኑ፣										
Project Name	MIDWAY ROAD REC	TEVAS	TION										
	ADDISON, G AND SAMPLING INF				······ ′	'ppi'o'	.uu <i>by</i>			DATA			
Date Started 1-2	21-01 Hammer Wt				lbs.		2]				
Date Completed	-21-01 Hammer Dro	>p			in.		Les L						
Drill Foreman	BDI Spoon Samp)ie UU)ie			- ". in	Sieve	Bio Sta	ц Ц]		
Inspector	CFA Rock Core D	. 00	3		"" in.		o Te	, ji	a	l			
Boring Wetrica	GEA MONTY 1999		r	r	1	No. 2	tratio tion 1	(Tota	or essa	eter			dex
SOIL CLAS	SIFICATION	Σ				Parcent Passing h	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Fotal),	Unconfined Compressive Strength Tons/Sq Ft.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Water Content %	Liquid Limit Plastic Limit Plasticity Index
SURFACE	ELEVATION	STRATUM DEPTH	H	SAMPLE NO.	SAMPLE TYPE	Sent.	as C ndarc	Suci	s/Sq	ket F	in Series	E C	352
6	19±	DEP DEP	DEPTH	NON SAN	₹¥	ůe.	Sta Xa	Soil Soil	385	00 00	à≊	- N	
- Brown very sti	ff CLAY(CH) with		0 -										
some sand and g	gravel. rete at surface.	ſ											
				1	ST					2.5		26	
-									ļ				
		2'	2-	<u> </u>									
- Dark Brown ver	y stiff CLAY(CH)			1		1			ĺ				
with some sand	, calcareous trace of gravel.	1	-	۱.	Ì	ĺ			ſ	Į .	ſ	[[
-brown below 6	1			2	ST				}	3.7		27	
-tannish brown	below 8'.					}							
- ·													
***			4	1	1								
-		1				l							
				3	ST	1				3.2		28	
-				_							1		
-		1			•	ļ			1				
_			6 -	<u> </u>							*		
-				}	1	ļ							
7					ST					3.0		24	
7	×		-	4	21	ĺ				0.0			
-											ļ		
		<u>8'</u>	8	ļ	1								
844 *													
		}	-										
Tan weathered	SHALY LIMESTONE.				4								
- ·		1		5	TCP		<u>100</u> 3.3"			ļ		5	
			10 -										
BOTTOM OF TEST	BORING AT 10'.												
			~										
1		1	i —										
-				•							1		
		<u> </u>	12 -	<u> </u>	l,	L							
SAMPLER TYPE		GR	DUNDWA	TER C	DBSER	VATI	ÓNS	2		BORING			
SS - STANDARD PENE	ETRATION TEST	AT	COMPLE	TION	D	RY F	т.			HOLLOW			ERS T AUGERS
ST - SHELBY TUBE CA - CONTINUOUS FL		AFT	TER	I	HRS.	F	Τ.		DC - D	ORIVEN	CASING		- MOGENG
TCP- TEXAS CONE PE	NETRATION TEST	WA	TER ON	RODS	NO	NB F	т.		MD -M	iud drii	LING		

Architect/Engineer Job Project Name MIDWAY ROAD RECONSTRUCTION Dra Project Location ADDISON, TEXAS App DRILLING AND SAMPLING INFORMATION Date Started 1-21-01 Date Started 1-21-01 Hammer Wt. 140 ibs. Date Completed 1-21-01 Hammer Drop 30 in. Drill Foreman EDI Spoon Sample OD in. Inspector Rock Core Dia. in. in. Boring Method CFA Shelby Tube OD 3 in.	b No awn By _ proved B	Solt Suction Test (Total), pF		00988 AM	3 J.	ent %	Liquid Limit Plastic Limit Plasticity Index
MIDWAY ROAD RECONSTRUCTION Dra Project Location ADDISON, TEXAS Application DRILLING AND SAMPLING INFORMATION Date Started 1-21-01 Date Started 1-21-01 Hammer Wt. 140 Date Completed 1-21-01 Hammer Drop 30 Drill Foreman EDI Spoon Sample OD in. Inspector Rock Core Dia. in. Boring Method CFA Shelby Tube OD 3	awn By _ proved 8	×	TEST	AM DA DATA	L	cent %	imit Limit y Index
Project Location ADDI SON, TEXAS Application DRILLING AND SAMPLING INFORMATION Date Started 1-21-01 Hammer Wt. 140 ibs. Date Completed 1-21-01 Hammer Drop 30 in. Drill Foreman EDI Spoon Sample OD in. Inspector Rock Core Dia. in. Boring Method CFA Shelby Tube OD 3 in.	proved 8	A	TEST	DATA	L	cent %	imit Limit y Index
DRILLING AND SAMPLING INFORMATION Date Started 1-21-01 Hammer Wt. 140 Date Completed 1-21-01 Hammer Drop 30 Drill Foreman EDI Spoon Sample OD in. Inspector Rock Core Dia. Boring Method CFA Shelby Tube OD 3 In. Soil CLASSIFICATION	·····	1	TEST	DATA		ent %	imit Limit y Index
Date Started 1-21-01 Hammer Wt. 140 lbs. Date Completed 1-21-01 Hammer Drop 30 in. Drill Foreman EDI Spoon Sample OD in. Inspector Rock Core Dia. in. Boring Method CFA Shelby Tube OD 3 in.	Percent Passing No. 200 Sieve Texas Cone Penetration Test or Standard Penetration Test fillows/Fit	Soli Suction Test (Total), pF	Ompressive			ent %	imit Limit y Index
Date Completed 1-21-01 Hammer Drop 30 in. Drill Foreman EDI Spoon Sample OD in. Inspector Rock Core Dia. in. Boring Method CFA Shelby Tube OD 3 in. SOIL CLASSIFICATION Interface Interface Interface Interface	Percent Passing No. 200 Sieve Texas Cone Penetration Test or Standard Penetration Test [Ritows/F]	Soli Suction Test (Total), pF	confined Compressive ength ns/Sq Ft.	it Penetrometer Sq Ft.	Weight L	ent %	imit Limit y Index
SOIL CLASSIFICATION	Percent Passing No. 200 Sieve Texas Cone Penetration Test or Standard Peretration Test (Stow	Soli Suction Test (Total), pF	iconfined Compressive ength ns/Sq Ft.	it Penetrometer Sq Ft.	Weight t.	ent %	imit Limit y Index
SOIL CLASSIFICATION	Percent Passing No. 200 Sit Texas Cone Penetration Tes Reandard Penetration Test B	Soil Suction Test (Total), pF	contined Compressive ength ns/Sq Ft.	it Penetrometer Sq Ft.	Weight L.	ent %	imit Limit y Index
SOIL CLASSIFICATION	Parcent Passing No. 200 Texas Cone Penetration Standard Penetration Te	Soil Suction Test (Total)	confined Compressive rength ns/Sq Ft.	it Penetrometer Sq Ft.	Weight t.	ent %	imit Limit y Index
SOIL CLASSIFICATION	Percent Passing No. Texas Cone Penetra Standard Penetratio	Soil Suction Test (T	confined Compre rength ns/Sq Ft.	it Penetromete Sq Ft.	Weight	ent %	Limit v Inde
SURFACE ELEVATION	Percent Texas C Standar	Soil Suc	rengti ns/Sc			ğ	quid L lastic asticit
		1	<u>586</u>	Pocke Tons/	Dry Uni Ibs./cu.	Water Content	25 25 25 25 25 25 25 25 25 25 25 25 25 2
Brown hard Lime Treated CLAY(CH) with some sand and gravel8.5" of concrete at <u>2'</u> .	1			-		23	PL=29
Isurface. / Dark Brown very stiff CLAY(CH) 2 with sand laminations.				3.7		29	PI=17
-with limestone seams below 6'. 5 - 3 ST				2.7		28	
				2.7		26	
Tan weathered SHALY LIMESTONE.	<u>10(</u> 3"	2				9	1
BOTTOM OF TEST BORING AT 10'.							
	ļ		*	-			
					1		
	l						
		Į			1		
	·	1	t.				
		i.	ĺ	1	1		
	ĺ	ĺ	ł				
					ľ		
	[l					
		ļ					
		1					
]		
		}					
			1				
SAMPLER TYPE GROUNDWATER OBSERV	ATIONS	<u> </u>	<u> </u>	BORING	METU	<u>ו ו</u> תו	
SC STANDARD SENETRATION TEST		•		HOLLOW			ERS
ST - SHELBY TUBE AT COMPLETION DATE CA - CONTINUOUS FLIGHT AUGER AFTER HRS.	YFT. FT. BFT.		DC - I	Contini Driven (10d Drii	CASING		T AUGERS

Ч

ALPHA TESTING, INC. 2209 Wisconsin St., Suite 100 Dallas, Texas 75229 (972) 620-8911

-	entGBW ENGINEERS,		E	ioring lob No	No			<u>B-9</u>)				
F	roject Name MIDWAY ROAD RECO	NSTRUC	TIÔN)rawn	Ву			AM			
F	Project Location ADDISON,	TEXAS			#	pprov	ved By			DA	L		
r	DRILLING AND SAMPLING INFo Date Started Hammer Wt.	ORMAT	ION		lbs.				TEST	DATA		<u> </u>	
ľ	Date Completed 1-21-01 Hammer Drop	>		11.1	in.		or lows/Ft)						
E	Drill Foreman BDI Spoon Sampl	e OD			in.	eve	st or Blow	14.					
l.	nspector Rock Core Di Boring Method CFA Shelby Tube	a. 	3	·····		I	n Te: est (, Pr	82				
5						No. 21	ion 1	(Tote	ressi	ler			xe
	SOIL CLASSIFICATION	¥				Percent Passing N	Texas Cone Penetration Test Standard Penetration Test (Bl	Soil Suction Test (Total),	ned Compressive Ft.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Waight Ibs./cu. ft.	ontent %	Liquid Limit Plastic Limit Plasticity Index
	SURFACE ELEVATION 618±	STRATUM OEPTH	DEPTH SCALE	SAMPLE NO.	SAMPLE	Parcent	Texas C Standar	Soil Suc	Unconfined (Strength Tons/Sq Ft.	Pocket (Tons/Sq	Dry Unif Ibs./cu.	Water Content	기도 없 " " " 기도 도
-	Dark Brown stiff Lime Treated CLAY(CH) with some sand,		0 -										
	calcareous nodules and gravel. -8" of concrete at surface			1	ST				0.9	1.2	79	37	LL=55
1	-B OI CONCIECE de Dalade								l l		1		PL=32
4		_ 2'	2										PI=23
E	Dark Brown very stiff CLAY(CH)												
-	with sand laminations and a trace of calcareous nodules.		-	_									
	3			2	ST					2.2		33	1
-			-							# 			
			4										
1			-										
_				3	ST					2.2		35	
-					- ×								
_			6 —										
1													
E				4 .	ST					2.2		31	
1			_	-			-			~.~			
4													
-			8								9 6		
-		1							ſ				
-			-	5	ST					2.2		31	
-										j			
╉	BOTTOM OF TEST BORING AT 10'.		10 -										
1			_										
-1													
]			-										
ž.,			12 -										
	SAMPLER TYPE SS - STANDARD PENETRATION TEST									Boring Hollow			ERS
	ST - SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER	A I AF1	COMPLE 'ER		HRS.	RY F				CONTINU			T AUGERS
	TCP- TEXAS CONE PENETRATION TEST		TER ON I			NB F	-			IUD DRIL		. –	

ient	GBW BI	NGINBERS,	INC.				loring	No.			<u>B-1</u>			
Architect/Engineer														
Project Name	MIDWAY	ROAD REC	ONSTRUC	TION										
Project Location	•	ADDISON,	TEXAS			/	pprov	red By			DA	L		
DRILLING Date Started 1-2	GAND SA	MPLING INF Hammer Wt.	ORMAT	ION		lbs.				TEST	DATA		[]	
Date Completed 1.	-21-01	- Hammer Dro	φ			in.		s/Ft)						
Drill Foreman	3DI	Spoon Samp	le OD			in.	e y	rov		ļ				
Inspector		Rock Core D	ia			in.	ō	Test st (8	Ъ,					
Boring Method	CFA	Shelby Tube	OD	3		în.		ation on Te	Total)	05Sive	Le L			ž
SOIL CLAS	SIFICATIO	N					Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total), pF	ned Compressive Ft.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Water Content %	Liquid Limit Plastic Limit Plasticity Index
SURFACE		N	STRATUM DEPTH	DEPTH SCALE	SAMPLE NO.	SAMPLE TYPE	rcent	oxas C andarc	oil Suc	Uncontined (Strength Tons/Sq Ft.	ocket F ons/Sq	ry Unit s./cu.	/ater C	ii ≇ µ
	18±		50	in the second	ώž	õ⊢	L a	유언	, м	<u>5%¥</u>	ٽٽ_	<u>ē</u>	3	그로로
Brown hard Lime CLAY(CH) with calcareous node	some sand	d,		0	1	ST					4.5+		38	LL=53 PL=38
8" of concrete - with lime to	e at sur: 1 <u>7". </u>	face 	- 3'-		2	ST					2.5		35	PI=17
Dark Brown very with sand lamin stiff with lin	nations.			5 -	3	ST					3.0		36	LL=83
] below 8'.	Mescolle 3	graver			4	ST					2.0		29	PL=31 PI=52
1			*		5	ST					1.5		33	
				10 -										
BOTTOM OF TEST	BORING A	AT 10'.		-						Ì				
1					1									
_			-		1						ļ			
-					1	ĺ .	Į					1		
-				15 -	1					{	1			
-			į	12	1			ļ						
1				-	1						-			
-				_	1)	ļ		
1.					1									
				-	1	ļ	l				ł			
				20 -	1		l							
					1					ļ	l			
					1									
-					1		ļ			ļ	l			
			i]						1			
				25 -	1		•							
-					1		[
***				_]									
					1	1								
	۰ ،			-	1					ļ				
SAMPLER TYPE GROUNDWATER OBSERVATIONS BORING METHO														
SAMPLER TYPE	TOATION T	COT							•		B ORING HOLLOW			FRS
SS - STANDARD PENE ST - SHELBY TUBE	UNATION II	CO 1		COMPLE			RY F			CFA -	CONTINU	JOUS F	LIGH	T AUGERS
CA - CONTINUOUS FL	IGHT AUGEF	R TEOT	AFT			HRS.		Т.		DC - I	Driven (IVD Drii	CASING		
TCP- TEXAS CONE PE	NEIKAHUN	1631	WA	TER ON	RODS	NO	NB F	T.		14102 -1V				

×

ALPHA TESTING, INC. 2209 Wisconsin St., Suite 100 Dallas, Texas 75229 (972) 620-8911

	······································								B~1	<u>1</u>		
Architect/Engineer Project NameMIDWAY ROAD RECO	าหระบบท	TTON								· · · · · · · · · · · · · · · · · · ·		
Project Name <u>MIDWAI</u> ROAD RECO	TRYAS	-11/11	R.,	A	norov	/ed Bv						
									DATA			
DRILLING AND SAMPLING INF Date Started <u>1-21-01</u> Hammer Wt.						······································		1631	DATA			
Date Completed 1-21-01 Hammer Dro	p			- 111. in		or lows/Ft)						
Drill Foreman Spoon Samp Inspector Rock Core D				- " in,	Siave	1810 (Blo	ų.	ļ				
Boring Method Shelby Tube	OD	3		in.				š				
	,		,		No. 2	ion.	(Tot	\$\$9,	ater 2			, e
SOIL CLASSIFICATION					Percent Passing N	Texes Cone Penetration Test Standard Penetration Test (8	Soil Suction Test (Total).	led Compressive F1.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Welght Ibs./cu. ft.	Water Content %	Liquid Limit Plestic Limit Plesticity Index
SURFACE ELEVATION	DE E	E۳	PLE		ent	dard dard	Suct	onfin Sq	Sq P	5 Č	С ъ	
632±	STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE	Perc	Texs	Soll Soll	Uncentined (Strength Tons/Sq Ft.	Poc	<u>∑</u> 2	Wat	 ユエヱ
- Dark Brown stiff CLAY(CH) with		0 -									Ť	
- some sand.												
-8" of concrete at surface			1	ST				ļ	1.7		34	
-								ł				
-	2'		1]			
		2										
-	ļ											
1]		2	ST					2.5		31	
Dark Brown very stiff CLAY(CH) vith some sand and a trace of			-									
calcareous nodules and gravel.								ļ				
	1	4										
-	ļ			Į.							ĺ	
		-										
			3	ST					3.0]	32	
		-										
1		6 -	Į									
1			1						ĺ]		
			4	ST		-			2.5		38	
		-						ļ				
_	<u>8'</u>	8-										
- Tan and Gray hard CALCAREOUS CLAY(CL) with some silty sand												
- and gravel.												
			5	ST					4.5+		18	
		-										
-		10 -	 									
BOTTOM OF TEST BORING AT 10'.								1				
1												
1								1				
÷		12 -										
SAMPLER TYPE	GR	OUNDWA	TER C	BSER	VATI	ONS			BORING		***	
SS - STANDARD PENETRATION TEST ST - SHELBY TUBE	AT	COMPLE	TION	D	RY F	T.			HOLLOW			ers T augers
CA - CONTINUOUS FLIGHT AUGER	AFT	TER	1	HRS.	F	r.		DC - [ORIVEN (CASING		
TCP- TEXAS CONE PENETRATION TEST	WA	TER ON	RODS	NO	NB F	r.		MD -N	IUD DRIL	LING		

ī,

ALPHA TESTING, INC. 2209 Wisconsin St., Suite 100 Dallas, Texas 75229 (972) 620-8911

ent GBW KNGII	NEERS,	INC.											
Architect/Engineer		Manazia	MTAN										
Project Name MIDWAY RO	AD RECU	TRAVC	LION_										
							,	SAA IIII					
Date Started DRILLING AND SAMPL	mmer Wt.				_ lbs.		Ð		IESI	DATA		Γ	
Date Completed <u>1-21-01</u> Har	mmer Drop)			- #î. :		vs/						
Drill Foreman BDI Spo	oon Sampi ak Cara Dé	e OD			- 41. in	200 Sleve	Blo o	u.					
Inspector Roo Boring Method CFA She	ok Core Di olhy Tubo	a ∩⊓	7		_ in	20 S	L S S S S S S	đ	9				
Boring Method		<u> </u>				o. 2(or of o	Tote	essi	ter			×
SOIL CLASSIFICATION		¥				Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total), pF	led Compressive Ft.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Water Content %	Liquid Limit Plastic Limit Plasticity Index
SURFACE ELEVATION		DΗ	폰끸	PLE		ant	02 D	Suc	onfir ngth KSq	Sq b	C ai	0	
632±		STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE	Perci	Texe Stan	No.	Unconfined (Strength Tons/Sq Ft.	Pock	<u>کُمْ</u>	Wat	의 해 및 의 권 료 료
- Dark Brown stiff Lime Trea CLAY(CH) with some sand.	ated		0 -										
8" of concrete at surface	e												
				1	ST				0.6	1.2	78	40	LL=60 PL=23
													PL=23 PI=37
		2'	2-	 									
- Dark Brown very stiff CLA with sand laminations. -stiff 2'-4'.	Y (CH)		-										
			۰	2	ST	,				1.7		35	
n													
											ļ		
]		4 _							ĺ		1	
				1									
				3	ST					2.0	l	34	LL=46
-													PL=29
-				1							}		PI=17
			6								•		
			_	ſ									
-			_		am					2.0		34	
	*	7.5'		4	ST		•			2.0		34	
Tannish Brown very stiff				.									
CALCAREOUS CLAY (CL) with	some		8-	· · ·							Ċ.		
_ silty and and gravel.				Ś	i ,								
-			_	1									
				5	ST					3.0		22	LL=38
				1									PL=18 PI=20
-													F1=20
- BOTTOM OF TEST BORING AT	10'.		10										
-					ĺ					E	1		
			_										
1	•	-	-										
)			· 12 ·										
SAMPLER TYPE	-	GR	DUNDWA	TER C	BSER	VATI	DNS	۲		BORING	метно		
SS - STANDARD PENETRATION TEST			COMPLE			RY F			HSA - I	IOLLOW	STEM	AUG	
ST - SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER		AFT			HRS.	κτι F				Continu Driven (IT AUGERS
TCP- TEXAS CONE PENETRATION TES	т		TER ON			NE F				UD DRI			

	GBW ENG		INC.			E	loring	No.			B-1	3		
Architect/Engineer		~~~ ~~~	~\\TC/m~~~~	****	·····	J	ob No). Di.			88000 MA	5		
Project Name	MIDWAY R	DAD RECON	TRYAS	TION		L	lonrov	ed By						
DRIL	LING AND SAMP	LING INF	ORMAT	ION							DATA			
Date Started		lammer Wt.				lbs.		÷						
Date Completed	<u>1-21-01</u> H	ammer Dro	φ	30		- in. In		or lows/ft)						
Drill Foreman	<u>EDI</u> S	poon samp ook Core D	ne OD			^{11.} in.	Sieve	810 (810	ų.					
Boring Method	CFA S	helby Tube		3		in.	200	ation T n Test	otal), <u>(</u>	ssive	5			×
SOIL C	LASSIFICATION						Percent Passing No.	Texas Cone Penetration Test Standard Penetration Test (Bi	Soil Suction Test (Total), pF	ed Compressive	Pocket Penetrometer Tons/5q Ft.	Dry Unit Welght Ibs./cu. ft.	Vater Content %	Liquid Limit Plastic Limit Plasticity Index
SURF/	ACE ELEVATION		STRATUM DEPTH	ΗΞ	SAMPLE NO.	SAMPLE TYPE	cent P	as Co nderd	Such	Uncontined C Strength Tons/Sq Ft.	ket Pr s/5q	Unit /cu. ft	ler Co	
	633±		STA DEP	DEPTH	ŠŠ	SAN	Per	Star Star	Soil	555		52	¶¶ Nga	
CLAY (CH) wi	stiff Lime Tra th some sand. rete at surface			0 -	1	ST				1.1	1.2	70	42	
			2'											PL=38 PI=41
Dark Brown sand lamina	stiff CLAY (CH tions.) with		2										
2 				-	2	ST					1.5		35	
-				4	1				x					
				-	3	ST					1.5		34	
			- -	-		·					2			
 	y hard CALCAR	EOUS	<u> </u>	6										
CLAY(CL) wi	th limestone ;	seams.]	-	1									
					4	ST					4.5+		24	-
1			8'	-										
<u> </u>		·	<u>∔</u>	8-										
Tan weather	ed SHALY LIME:	STONE .	l		1			100						
1					5	TCP		1"					18	
- BOTTOM OF T	EST BORING AT	10'.		10										
- -				-										
				12 -										
SAMPLER T			GR	DUNDWA	TER (BSER	VATI	ONS	•		BORING			
SS - STANDÄRD	PENETRATION TEST	Г	AT	COMPLE	TION	D	RY F	т.			HOLLOW			ERS T AUGERS
CA - CONTINUOU	S FLIGHT AUGER	ст	AFT			HRS.	F			DC - 1		CASIN		
ICP- IEXAS CON	E PENETRATION TE	31	WA	TER ON	RODS	NO	NE F	I.		(AID -łA				

;

ant GBW BNGINEERS,	INC.											
Project Name MIDWAY ROAD RECO	ONSTRU	TION										
Project Location ADDISON,	TEXAS									L		
DRILLING AND SAMPLING INF Date Started 1-21-01 Hammer Wt.	ORMAT	ION		ibs.				TEST	DATA		·	
Date Completed <u>1-21-01</u> Hammer Dro	``	30		in.		(Fd)						
Drill Foreman Spoon Samp	le OD			ìn.	a	ν Σ δ δ						
Inspector Rock Core D	ia			_ in.	S.	t (Bl	ц.					
Boring Method CFA Shelby Tube	OD	3		_ in.	No. 200	ration 1 ion Tes	(Total),	Compressive	iter			ax.
SOIL CLASSIFICATION	×				Percent Passing N	Texas Cons Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total),	Unconfined Comp Strength Tons/Sq Ft.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Water Content %	Liquid Limit Plastic Limit Plasticity Index
SURFACE ELEVATION	THU	E	IPL E		tue	o as Conception	Suc	2/SQ	s/Sq F	CU U	erC	3258 1
634±	STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE	Perc	Tex: Stan	Soil	Stre	Lon Lon	2 2 2 2	Wat	ಸಕತ
 Dark Brown very stiff Lime Treated CLAY(CH) with some sand8" of concrete at surface. 		0	1	ST					2.0		36	
	<u>2</u> '	2-	1									
Dark Brown very stiff CLAY(CH) with sand laminations. -brown below 4'.			2	ST					2.2		30	
		4	\ 									
- Tan weathered SHALY LIMESTONE.	<u>5'</u>		3	ST					2.2		30	
		6										
		8 -										
-												
-1												
			4	TCP		<u>100</u> 1.5"					18	
BOTTOM OF TEST BORING AT 10'.												
-		-										
SAMPLER TYPE SS - STANDARD PENETRATION TEST ST - SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER TCP- TEXAS CONE PENETRATION TEST	AT AF1	12 DUNDWA Comple Ter Ter on I	TION I	D HRS.	RY F	Т. Т.		HSA - 1 CFA - (DC - (BORING HOLLOW CONTINU DRIVEN (HUD DRIL	STEM	AUG	ERS T AUGERS

jent GBW ENG	INEERS,	INC.											*****
Architect/Engineer													
Project Name MIDWAY F													
Project Location A	DDISON,	TEXAS			<i>P</i>	vpprov	ed by			IJA			
DRILLING AND SAM	PLING INF Hammer Wt.	ORMAT	ION		lbs.				TEST	DATA			
Date Completed 1-21-01							s/Ft)						
Drill Foreman BDI S	Spoon <mark>Sam</mark> p	le OD			in.		ro Wo						
Inspector F	Rock Core D	ia.			in.	Sie	Test st (B	đ	an.				
Boring Method S	Shelby Tube	OD	3		_ in.		ration ion Te	Total),	Compressive	ter.			×
SOIL CLASSIFICATION	I	Σ				Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total),	hed Comp	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight bs./cu. ft.	Water Content %	Liquid Limit Plastic Limit Plasticity Index
SURFACE ELEVATION		TH	포퍼	L.	l de la	ent	Sep	Suc	Sad	ket F s/Sq	5 a	Pr C	je ze
635±		STRATUM	DEPTH	SAMPLE NO.	SAMPLE	Perc	Texa Stan	Soil	Unconfined (Strength Tons/Sq Ft.	Log	ट्रह्व	Wat	
- Dark Brown very stiff CL	LAY (CH)		0 _	1									
with some sand and a tra gravel.	ice or												
8.25" of concrete at su	irface			1	ST					3.5		37	LL=85
brown with calcareous n	odules		-										PL=30 PI=55
- below 8'.	1000200		2 -			Í							F1=33
-		ļ	<u> </u>	ł		ļ							
-													
•		1		2.	ST					2.0		32	
-1]									
				1									
			4	1									•
1		ļ	_	1									
_				3	ST					2.2		37	
				1									
			-	1	·	ļ ,							
-		ļ	6	<u> </u>									
-				1						1			
-			-		00					0.5		~~	
				4'	ST				-	2.5		32	
<i>↓</i> ′			_	1									
			8 –										
-			-										
-													
				5	ST		Í			2.7		34	
											Į		
			- 10 -										
BOTTOM OF TEST BORING AT	5 10'.						ļ				1		
-													
-1 ⁺													
1 6			_				00 W0 IIII- W III						
and a second br>Second second br>Second second			12 -										
SAMPLER TYPE		GRO	DUNDWA	TER C	BSER	VATI	DNS	•		BORING			
SS - STANDARD PENETRATION TES	т	AT	COMPLE	TION	D	RY F	Γ.			HOLLOW			
ST - SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER		AFT			HRS.	F			DC - E	Con line Driven (CASING	LIGH SS	T AUGERS
TCP- TEXAS CONE PENETRATION TE	EST	WA	TER ON I	RODS	NO	NB F	r.			iud drii			

-

ALPHA TESTING, INC. 2209 Wisconsin St., Suite 100 Dallas, Texas 75229 (972) 620-8911

ant GBW ENGINEERS , Architect/Engineer	INC.									6		
Project NameMIDWAY ROAD REC	ONSTRU	TION							MA			
Project LocationADDISON,	TEXAS								DA	L		
DRILLING AND SAMPLING IN Date Started 1-21-01 Hammer W	FORMAT	ION		lbs.		ş		TEST	DATA		1	
Date Stated Harmer Dr Date Completed Harmer Dr	op			in.		on Test or Test (Blows/Ft)						
Drill Foreman Spoon Sam	pie OD			in.	ē,	or ows						
Inspector Rock Core	Dia.			_ in.	195	Test st (B	<u>ц</u>					
Boring Method CFA Shelby Tub	e OD	3		_ in.		ration ion Ter	(Total),	Compressive	ter			ex.
SOIL CLASSIFICATION	W				Percent Passing No.	Texas Cone Penetrati Standard Penetration	Soil Suction Test (Total), pF	ned Comp h I Ft.	Pocket Penetrometer Tans/Sq Ft.	Dry Unit Weight bs./cu. ft.	Water Content %	Liquid Limit Plastic Límit Plasticity Index
SURFACE ELEVATION 635±	STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE	ercent	fexas C Standar	soil Suc	Unconfined (Strength Tons/Sq Ft.	Pocket fons/So	Dry Uni bs./cu.	Vater (ಾರ್ ಹೆ ೩೩೩ ವರ್ಷ
- Dark Brown hard CLAY(CH) with	<u>ഗ</u> ப		<u> </u>	- -	<u> </u>						É	
some sand and a trace of												
gravel8.25" of concrete at			1 1	ST					4.5+		35	LL=65
surface -very stiff below 4'.			1		1							PL=36
-		-	1									PI=29
_	1	2-	1									
-												
3			2	ST					1.7		33	
		-		31					1			
-			}	ł								
-		4 -]]		
-1		-	1	[]]		
-] -	1	l	ſ							
		_	3	ST					2.2		31	LL=83 PL=30
		-	1									PL=30 PI=53
	<u> </u>	6	<u> </u>]								
- Dark Brown very stiff CLAY (CH)		-	1								ſ	
with some sand.		-										
			4	ST				ĺ	2.2		32	
-												
	8'_	8-		ļ	l							
- Tannish Brown stiff CALCAREOUS												
CLAY(CL/CH) with petro-chemical dor.	·		1		1					1		
-			5	ST					1.5		22	
-			}							}		
		10	i		l							
- BOTTOM OF TEST BORING AT 10'.		1 10 -										
-												
1		-										
•		12					•					
SAMPLER TYPE	GR	OUNDW/	TER C)BSER	VATI	DNS	•		BORING			
SS - STANDARD PENETRATION TEST	AT	COMPLE	TION	D	RY F	T.			HOLLOW			iers It augers
ST - SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER		TER		HRS_	F	т.		DC - 1	DRIVEN	CASING		
TCP- TEXAS CONE PENETRATION TEST	W۵	TER ON	RODS	NO	NB F	Γ.		MD -N	iud drii	LING		

٠,

.

2

ientGBW ENGINEERS, Architect/Engineer	INC.				loring ob Nr	No			B-1 0098	*****		
Project Name MIDWAY ROAD REC	ONSTRU	TION		— °)rawn				АМ			
Project LocationADDISON,	TEXAS				pprov	ved By			DA	L		
DRILLING AND SAMPLING IN Date Started 1-21-01 Hammer W	FORMAT	ION		lbs.					DATA	T	 ,	
Date Completed <u>1-21-01</u> Hammer Dr				- in,		s/Ft)						
Drill Foreman <u>BDI</u> Spoon Sam	ple OD			in.	æ	20 S						
Inspector Rock Core I	Dia.			in.		t (Bi	Å					
8oring Method CFA Shelby Tub	• OD	3		in.	No. 200 :	ration Test or on Test (Blows	Total),	Compressive	fer			×
SOIL CLASSIFICATION	- <u>-</u>				Percent Passing N	Texes Cone Penetreti Stendard Penetration	Soil Suction Test (Total),	ned Compi	Pocket Penetrometer Tons/5q Ft.	Dry Unit Weight Ibs./cu. ft.	ontent %	Liquid Limit Plastic Limit Plasticity Index
SURFACE ELEVATION 644±	STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE TYPE	Percent	Texas C Stendar	Soll Suc	Unconfined C Strength Tons/Sq Ft.	Pocket I Tons/5q	Dry Unit Ibs./cu.	Water Content	
- Dark Brown very stiff CLAY(CH) with calcareous deposit and some sand - poss. fill		0 -										* *
-6.5" of concrete at surface.		2	1	ST					2.0		61	LL=85 PL=30 PI=55
	31		2	ST					2.7		38	
Tannish Brown and Gray very stiff CALCAREOUS CLAY(CL/CH) with clay zones. -hard with limestone seams	- 	4	3	ST					2.5		27	
below 4'.	5'	-	4	ST					4.5+		15	
Tan weathered SHALY LIMESTONE.		6										
						-						
	<u>8'</u> .	8 -										
Tan weathered SHALY LIMESTONE.						100						
		10 -	5	TCP		1"					15	
BOTTOM OF TEST BORING AT 10'.			Ř.									
1		2 1207				×						
SAMPLER TYPE SS - STANDARD PENETRATION TEST ST - SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER TCP- TEXAS CONE PENETRATION TEST	AT AFI	COMPLE ER TER ON		D HRS.	VATI RY F F NE F	Т. Г,	1	HSA -) CFA - (DC - [BORING HOLLOW CONTINU DRIVEN (HUD DRIU	STEM	LIGH	ers T Augers

×

-	GBW ENGINEERS,	INC.			B J	loring ob Na	No			B-1 00988	8		**
Architect/Engineer	MIDWAY ROAD REC	ONSTRUC	CTION										
Project Name	ADDISON,	TEXAS											
DRILLING	AND SAMPLING IN	FORMAT	ION		lbs.					DATA		1 1	
						l	F1						
Date completed	DI Spoon Sam	ple OD			in.	ø	0 vs						
Date Completed Drill ForemanE	Rock Core I	Dia.			in.	Siev	est (Bit	L D			,		
Boring Method	CFA Shelby Tub	e OD	3		in.		Tes	(al),	sive				
	SIFICATION					Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total),	id Compressive A.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Water Content %	Liquíd Lìmit Plastic Limit Plasticity Index
SUBEACE	ELEVATION	⊢ Ž-	тш	Щ	щ	a z	0.5 D	nctic	Sa tine	255	t, tr	8	Plas
64	44±	STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE	Percei	Texas Stand	Soil S	Unconfined (Strength Tons/Sq Ft.	Pocke Tons/	D 2, 20	Water	""" ""
- Dark Brown very	stiff CLAY(CH) and calcareous		0 -		ST					3.2		32	LL=73
nodules - poss.	. fill			1									PL=27
6.5" of concre	ete_at_surface	<u>3'</u>		2	ST					3.2		38	PI=46
Tan and Gray ha	ard CALCAREOUS		-	3	ST					4.5+		19	
CLAY(CL/CH) wit	in limescone	, 5'_	5-	4	ST					4.5+		14	
	SHALY LIMESTONE.]		ļ	ļ							
			-										
-1		8'	-	-									
	- WHEE ANALY AND ANALY POST ANALY ANALY THE		-]									
Gray SHALY LIME	SSTONE.			5	TCP		<u>100</u> 1"					14	
BOTTOM OF TEST	BORING AT 10'.		1 10 -	1			Τ						
-			-	1									
			_									!	
				1									
			-	1									
- ·			15 -	1						ļ			
-			_									[]	
-			í _										
		Į.	-			-	-]				
		1	-]					}	ļ			
**			20 -	1									
**			-	1			;						
-				1									
				1					1				
- ·				1									
**			25 -	1									
~				1									
			-	1									
-				1									
1 ·		V11 A-10-1000000		}									
	х.		30										
SAMPLER TYPE		GR	OUNDW/	TER ()BSER	VAT	ONS	-		BORING			
SS - STANDARD PENE	TRATION TEST	AT	COMPLE	TION	D	RY F	т.			TOLLOW			ERS TAUGERS
ST - SHELBY TUBE CA - CONTINUOUS FLI	GHT AUGER	AF			HRS_	F	Т.		DC - 1	RIVEN (CASING		I AUGERS
TCP- TEXAS CONE PEN		WA	TER ON	RODS	NO	ne f	T.		MD -M	UD DRIL	LING		

	ient GBW ENGINBERS,	INC.											
,	Architect/Engineer										******		
	Project Name MIDWAY ROAD RECO Project Location ADDISON,	NSTRUC	TION										
I						(phio)	ARG MÁ						
	DRILLING AND SAMPLING INF Date Started <u>1-21-01</u> Hammer Wt.		140		_ lbs.		_		TEST				1
(Date Completed 1-21-01 Hammer Drop	> <	30		_ in.		/s/Ft						
(Drill Foreman EDI Spoon Sampl	e OD			- ^{in.}	eve	810 810 810						
[nspector Rock Core Di	a	3		- in.		Ter est (, p	e				
	Boring Method CFA Shelby Tube	00	د				ation	Fotal	vissa	æ			×
	SOIL CLASSIFICATION	5				Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blows/Ft)	Soil Suction Test (Total), pF	ed Compressive Ft.	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	Water Content %	Llquid Limit Plastic Limit Plasticity Index
ĺ	SURFACE ELEVATION	D.F.	ŢΨ	ш	ш Ш	L L	op ard	Suc	/Sq /Sq	SC P	Ĕā	ъ Т	<u>la a</u>
	644±	STRATUM DEPTH	DEPTH	SAMPLE NO.	SAMPLE TYPE	Perce	Texa Stan	Sol	Unconfined C Strength Tons/Sq Ft.	Pock Tons	<u>5</u> 4	Wate	
	Brown and Tan hard CLAY (CH)		0 -										
ļ	with calcareous deposit, gravel			1									
	and some sand poss. fill -6.5" of concrete at surface.			1	ST					4.5+		21	I
													PL=28
_			_	1									PI=45
_			2										
-			-	2	ST					4.5+		32	
				1									
				1									
		4'	-										
	Tan and Gray hard CALCAREOUS		4	1									
	CLAY(CL) with limestone seams.			3	ST					4.5+		20	
													PL=20 PI=28
-													F1=20
		6'											
	Tan weathered SHALY LIMESTONE.		6-	1									
-			-										
													ļ
-							·			-			
		8'		1									
_		ш <u> </u>	8	1									
				ļ	ł								
~	Gray SHALY LIMESTONE.				TCP		<u>100</u>					13	
				4	JUF		1.3"					13	
	BOTTOM OF TEST BORING AT 10'.		10 -	ł					ļ				
-				ſ							r		
-													
													- Multin - A Avenue
			12										
	SAMPLER TYPE	GR		TER C	BSER	VATI	ONS	÷	1	BORING	METHO	D D	
	SS - STANDARD PENETRATION TEST		COMPLE			RY F			HSA - I	HOLLOW	STEM	AUG	•
	ST - SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER	AFI			HRS.		T.			DRIVEN (T AUGERS
	TCP- TEXAS CONE PENETRATION TEST	WA	TER ON	RODS	NO	NB F	Т.		MD -N	IUD DRI	LING		

-

Architect/Engineer	GBW ENGINEERS,				L	ob No)			00988	3		
Project Name	MIDWAY ROAD REC	ONSTRU	CTION		C	lrawn	Ву			AM			
Project Location	ADDISON,	TEXAS			A	pprov	ved By _			DA	L		
Date Started 1-	IG AND SAMPLING INI 21-01 Hammer Wt		140		_ lbs.				TEST	DATA		T	
Date Completed 1	-21-01 Hammer Dro	op qu	30		_ in.		vs/Ft)						
Drill Foreman	EDI Spoon Sam	ole OD			in. in.	ieve	St of (Blov	L L.					
Inspector	Rock Core E	≫a. ⊶ ∩D	3		- ^{m.} in.		n Te est	а, р	ş				
Boung Method				*			ratio ion 1	Tota	essi	191			X
SOIL CLA	SSIFICATION	5				Percent Passing No.	Texas Cone Penetration Test or Standard Penetration Test (Blow	Soil Suction Test (Total),	ed Compressive Ft.	Pocket Penetrometer Tons/Sq Ft.	Weight h.	ontant %	Liquid Limit Plastic Limit Plasticity Inde
	ELEVATION	STRATUM DEPTH	DEPTH SCALE	SAMPLE NO.	SAMPLE TYPE	Percent I	Texas Co Standard	Soil Suct	Unconfined C Strength Tons/Sq Ft.	Pocket P Tons/Sq	Dry Unit Weight Ibs./cu. ft.	Water Content	
	and Gray hard		0 -										
limestone seau	18.			1	ST					4.5+			LL=59
-7.25" of cond	crete at surface.				51								PL=21
	1	2'		1									PI=38
	www.entrin Wildle damay sunni wanni Wille yuma asaa a	<u>+</u> ≞ _	2	•									
			-										
] Gray SHALY LIM	ESTONE.												
4			-	1									
			-	1									
			4	1									
			-	2	TCP		<u>100</u> 1.3"					13	
				1									
			-										
				1			1						
			6		1								
			-	1	ł								
			-	1									
			8-	1									
			-	1									
]					ļ				
		and we survey a	-	3	TCP		100					15	
		- Warden and Andrew					1.3"						
BOTTOM OF TEST	BORING AT 10'.		10-										
			-	}									
]									
				ł									
م الرون و بر بر بر	.*. 		12 -	<u>i </u>									
SAMPLER TYPE		GR	OUNDWA	TER C	DBSER	VATI	ONS	e		BORING			
SS - STANDARD PEN ST - SHELBY TUBE	ETRATION TEST	AT	COMPLE	TION	D	RY F	Т.			HÓLLOW			iers It auger:
CA - CONTINUOUS FI		AF	TER	1	HRS.		т.		DÇ - 1	DRIVEN	CASING		
TCP- TEXAS CONE PE	ENETRATION TEST	WA	TER ON	RODS	NO	NE F	T.		MD -N	IUD DRII	LING		

	GBW ENGINEERS,												
Architect/Engineer	MIDWAY ROAD REC		TON						*****				
Project Name	ADDISON,	TEXAS			A	ondo	/ed By			DA			
DRILLIN	NG AND SAMPLING INF	ORMAT	ION							DATA			
	-21-01 Hammer Wt. 1-21-01 Hammer Dro				_ Ibs. in.		/Ft)						
Date Completed	EDI Spoon Samp					8	0r 0 NB						
Inspector	Rock Core D	ia.			_ in.	Siev	Lest (B)	å					
Boring Method	CFA Shelby Tube	00	3		_ in.	200	ration ion Tes	lTotal),	Compressive	ter		A contract of a decision of a	, X
SOIL CLA						Percent Passing No.	Taxas Cone Penetration Test or Standard Penetration Test (Blow	Soil Suction Test (Total), pF	Ted Comp	Pocket Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	ontent %	Liquid Limit Plastic Límit Plasticity Index
	E ELEVATION 643±	STRATUM DEPTH	DEPTH SCALE	SAMPLE NO.	SAMPLE TYPE	Percent	Taxas C Standare	Soil Suc	Unconfined (Strength Tons/Sq Ft.	Pocket / Tons/Sq	Dry Unit Ibs./cu.	Water Content	92 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19
hard CALCAREO	very stiff to US CLAY(CL) with ms. crete at surface.			1	ST					2.7		22	
		2'_	2										
- - - Gray SHALY LI	MESTONE.												
			4 -	2	TCP		<u>100</u>					13	
			-				1.5"						
-													
				1									
			6										
-									ļ				
			·····										
]													
-			8										
-													
-													
-													
-				3	TCP		100 1. 3 "					16	
			10 -										
- BOTTOM OF TES	T BORING AT 10'.										1		
-			-										
-			-										
e- 4			12 -										
SAMPLER TYP	E	GR		TER C)BSER	VATI	ONS	•	1	BORING	METHO	D	
SS - STANDARD PEN			COMPLE			RY F			HSA - I	IOLLOW	STEM	AUG	
ST - SHELBY TUBE CA - CONTINUOUS F TCP- TEXAS CONE P		AF	ER	1	HRS.	F	т.		DC - [Driven IUD Drii	CASIN		T AUGERS
I UI - IEAMO UUNE P	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	WA	TER ON	ทบบร	MO.	NB F	1.		1				

Antoine

ient GBW BNG		INC.							***				
Architect/Engineer			WETOW										
Project Name MIDWAY R	OAD RECO	MSTROU	FION										
	DDISON,					pp o							
DRILLING AND SAME	lammer Wt.		140		_ lbs.				TEST	DATA			
Date Completed 1-21-01 H	lammer Droj	p	30		_ in.		rs/Fi						
Drill Foreman SDI S	poon Sampl	le OD			in.	eve	800						
Inspector R	lock Core Di	a	3		in. in.		tion Test or Test (Blows/Ft)	a, pr	ę	2			
Boring Method CFA S	neloy Tube		2				on T	lo 13	50 50 50	ď			
SOIL CLASSIFICATION		×				Percent Passing No.	Texas Cone Penetration Standard Penetration	Soil Suction Test (Total),	ed Compressive Ft.	Pockat Penetrometer Tons/Sq Ft.	Dry Unit Weight Ibs./cu. ft.	ontent %	Liquid Límit Plastic Límit Plasticity Index
SURFACE ELEVATION 643±		STRATUM DEPTH	DEPTH SCALE	SAMPLE NO.	SAMPLE TYPE	ercent	exas Co tandard	oil Suct	Unconfined (Strength Tons/Sq Ft.	ocket P ons/Sq	ry Unk 19./cu. 1	Water Content	
		in D	<u>80</u> 0	ΰZ	w⊢	ă.	1-10	<u></u>		<u> </u>	08	5	
Tannish Brown and Gray h CALCAREOUS CLAY(CL) with	ara		-										
limestone seams.					am					4.5+		10	LL=35
-6.75" of concrete at su	rface.		-	1	ST					4.5+		10	PL=35
ar ar		. .	-										PI=18
· · · · · · · · · · · · · · · · · · ·		_ 2'	2 -	 	-								
				2	CA							13	
Gray SHALY LIMESTONE.			-										
-			-	1	1								
			i -										
			4 -	<u> </u>									
-				1			100						
-				3	TCP		1"					12	
-			-										
				1									
-			- -	ł							_		
									· ·				
ar T	•												
			-	.			•						
				- .* .									
		•	8		*.	•							
			-	20 C									
				<u> </u>									
			-	4	TCP		100					16	
				1 *	1		1.5"						
BOTTOM OF TEST BORING AT	10'.		10-										
1												Í	
				l									
4			÷ ۱۰ سا	ЬY.,		۰							
·)		. ÷,	α 12	te e Kasta		ŀ							
SAMPLER TYPE			DUNDWA	TER	DBSER	VATI	ONS	<u>.</u>		BORING	METHO	D	
SAMPLEA TIPE SS - STANDARD PENETRATION TEST	Т		COMPLE	\$		RY F			HSA - I	HOLLOW	STEM	AUG	ERS
ST - SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER		AFI			HRS.		,. Т.		CFA - (DC - I	Continu Driven (JOUS F	iligh 3s	T AUGERS
TCP- TEXAS CONE PENETRATION TE	ST		TER ON			NB F				IUD DRIL			
		,,,,					-						

	ALPHA TESTIN 209 Wisconsin St., Dallas, Texas 75229 (972) 620-8911 KEY TO	Sutte 100	OLS AND CLA	SSIFICAT	IONS
			ON EACH "RECO HE REPORT, ARE		RFACE EXPLORATION",
			<u>or rock types</u> I symbols colum	4)	
CLAY	SILT	SAND	LIMESTONE	SHALE	ASPHALT/CONCRETE
I. SOIL DESCRIPT	ION	ļ	IT. RELATIVE P	ROPORTIONS	
(A) COH	ESIONLESS SOIL	S	DESCRIPTIV	E TERM	PERCENT
RELATIVE DENS VERY LOOSE LOOSE COMPACT DENSE VERY DENSE	0 5 11 31	BLOWS/FT TO 4 TO 10 TO 30 TO 50 DUER 50	TRACE LITTLE SOME AND	IZE IDENTIE	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
(B).COHE <u>CONSISTENCY</u> VERY SOFT SOFT FIRM STIFF VERY STIFF HARD	LESS T .25 .50 1.00	u, TSF HAN .25 TO .50 TO 1.00 TO 2.00 TO 2.00 TO 4.00 4.00	BOULDERS: COBBLES: GRAVEL: SAND: SILT: CLAY:	-8 INCH DI -3 TO 8 IN -COARSE - -FINE - -COARSE - -MEDIUM - -FINE - 0. -0.002 MM	AMETER OR MORE NCH DIAMETER 3/4 TO 3 INCH 5.0 MM TO 3/4 INCH 2.0 MM TO 5.0 MM 0.4 MM TO 2.0 MM 0.7 MM TO 0.4 MM TO 0.07 MM
I. PLASTICITY			V. DRILLING A	ND SAMPLING	SYMBOLS
THE UN	T 0 5 11		RC: ROCK TCP: TEXAS SS: SPLIT EXCEP ST: SHELB WHERE WS: WASHE HSA: HOLLO CFA: CONTIL	CONE PENETF -SPOON 1 3/8 T WHERE NOTE Y TUBE = 3" NOTED D SAMPLE J STEM AUGER NUOUS FLIGHT	3" I.D. 2" O.D. ED O.D. EXCEPT AS

<u>APPENDIX E</u>

EXISTING STORM SEWER ANALYSIS

.

.

MIDWAY ROAD RECONSTRUCTION COMMON VARIABLES USED IN ANALYSIS

EXISTING STORM SEWER SYSTEM

Mannings "n"										
Pipe Mat'l Recommended n-value Source										
RCP	0.013	Per the Town of Addison Drainage Manual								
CMP,PLN	0.024	(Plain or Coated) Per the Town of Addison Drainage Manual								
CMP,PVD	0.020	(Paved Invert) Per the Town of Addison Drainage Manual								

Outfall Information											
	Storm	HGL	Outfall								
	Sewer	(tailwater)	Location	Comments							
				HGL shown based on "tailwater" elevation shown on as-bu							
LINE A	610.50	616.12	9'x5'	plans, associated storm event not listed.							
LINE B	610.93	616.54	LINE A								
				HGL shown based on "tailwater" elevation shown on as-built							
LINE C	610.60	616.12	9'x5'	plans, associated storm event not listed.							
				HGL shown based on "tailwater" elevation shown on as-built							
LINE D	611.73	616.12	9'x5'	plans, associated storm event not listed.							
				Plans for this system could not be found, only one inlet located							
LINE E			Unknown	within the limits of pavement reconstruction							

.

MIDWAY ROAD RECONSTRUCTION DRAINAGE AREA CALCULATIONS

EXISTING STORM SEWER SYSTEM

			DRAINAGE	AREA CALCU				
DRAINAGE								
AREA NO.	IN							
	NO.	PAVING STATION	STORM FREQUNCY	TIME OF CONC.	RUNOFF COEFF. "C"	MULTIPLIER "Ca"	AREA	C*Ca*A
			(years)	(min) 10	00211.0		(acres)	
		<u> </u>	100		0.8	1	2.09	1.672
Combined	B1		100	10	0.0		2.00	1.672
2			100	10	0.9	1	0.36	0.324
Combined	B2			10				0.324
3			100	10 10	0.8	1	1.56	1.248
Combined	A1							1.248
4			100	10	0.9	1	0.46	0.414
Combined	B3			10				0.414
5A			100	10	0.8	1	1.2	0.96
Combined	D1A			10				0.96
5B			100	10	0.8	1	0.47	0.376
Combined	D1B			10				0.376
6A			100	10	0.9	1	0.5	0.45
Combined	C1A			10				0.45
6B			100	10	0.9	1	0.21	0.189
Combined	C1B			10				0.189
7			100	10	0.8	1	1.27	1.016
Combined	C2			10			0.67	1.016
8			100	10	0.9	1		0.603
Combined	C3			10	0.8			0.603
9			100	10		1		1.112
Combined	C4			10				1.112
10			100	10	0.8	1	4,77	3.816
Combined	C5			10				3.816
11			100	10	0.8	. 1	1	0.8
Combined	C6			10				0.8
12			100	10	0.8	1	0.74	0.592
Combined	C7			10				0.592
13			100	10	0.8	1	0.85	0.68
Combined	C10			10				0.68
14			100	10	0.9	1	0.61	0.549
Combined	C11			10				0.549
15	.		100	10	0.8	1	1.47	1.176
Combined	C12			10				1.176
16			100	10	0.8	1	0.64	0.512
Combined	C13			10				0.512
29			100	10	0.9	1	0.35	0.315
Combined	C14		4000	10				0.315
17	045		100	10	0.8	1	0.95	0.76
Combined	C15			10				0.76
18	040		100	10	0.8	1	0.42	0.336
Combined	C16			10				0.336

-)

MIDWAY ROAD RECONSTRUCTION DRAINAGE AREA CALCULATIONS

EXISTING STORM SEWER SYSTEM

			DRAINAGE	AREA CALCI	JLATIONS		<u> </u>		
DRAINÁGE AREA NO.			DESIGN						
	NO.	PAVING STATION	STORM FREQUNCY	TIME OF CONC.	RUNOFF COEFF. "C"	MULTIPLIER "Ca"	AREA	C*Ca*A	
			(years)	(min)			(acres)		
19			100	10	0.8	1	1.05	0.84	
Combined	C17			10				0.84	
20			100	10	0.9	1	0.69	0.621	
Combined	C18			10				0.621	
21			100	10	0.8	1	1.2	0,96	
Combined	C19			10				0.96	
30			100	10	0.9	1	0	0	
Combined	22			10				0	
22			100	10	0.8	1	2.32	1.856	
Combined				10				1.856	
23			100	10	0.8	1	1.64	1.312	
Combined	C21			10				1.312	
25			100	10	0.8	1	0.57	0.456	
Combined	C23			10				0.456	
26			100	10	0.8	1	2.01	1.608	
Combined	C24			10				1.608	
24			100	10	0.8	1	4.29	3.432	
Combined	E1			10				3.432	
27			100	10	0.8	1	0.42	0.336	
Combined	C8			10				0.336	
28			100	10	0.8	1	1.52	1.216	
Combined	C9			10				1.216	

MIDWAY ROAD KECONSTRUCTION INLET CALCULATIONS

EXISTING STORM SEWER SYSTEM

								_		INLET	CALCULATI	ONS					_					
IN	LET		DESIGN		AREA RUNOI	FF (Q=CIA)	CARRY-						ON-	CAPACITY	LENGTH		1	CARRY	OVER TO	FLOW	C'Ca'A
	PAVING	DRAINAGE	STORM	TIME OF				OVER	TOTAL	CROSS	GUTTER	ALLOWABLE	GUTTER	GRADE/	PER FOOT	OF INLET	INLET	TYPE OF	INLET		INTO	INTO
NO,	STATION	AREA NO.	FREQUNCY	CONC.	INTENSITY	C*Ca*A	°0"	FROM	FLOW	SLOPE	DEPTH	DEPTH	SLOPE	LOWPT	OF INLET	REQ'D	LENGTH	INLET	NO.	FLOW "Q"	INLET	INLET
			(years)	(min)	(in/hr)	(2005)	(c.f.s.)	(C.f.6.)	(C.f.s.)	%	ñ	fi fi	11./11		(cfs/ft)	(R)	(ft)			(cfs)	(cfs)	
Bí	4+25	1	100	10	8.74	1.67	14,6	0.0	14.6	0,610	0.22	0.13	0.02	GRADE	0.45	32,5	20	CURB	A1	5,6	9.0	1.03
82	4+45	2	100	10	8.74	0.32	2.8	0.0	2,8	4.740	0.25	0.42	0.023	GRADE	0.48	5.9	10	CURB	<u>B3</u>	0.0	2,8	0.32
83	8+60	4	100	10	6.74	0.41	3.8	0.0	3.6	3.970	0,29	0.42	0.012	LOWFT	0.48	7.6	10	CURB	LOWPT	0.0	3.8	0.41
<u>A1</u>	6+65	3	100	10	8.74	1.25	10,9	5.6	16.5	1.350	0.35	0.30	0.011	LOWPT	0.61	26.9	10	CURB	LOWPT	10.4	6,1	0.70
D1A	10+65	5A	100	10	8,74	0.95	8.4	55.4	63.8	2.840	0.80	0.42	0.009	LOWPT	1.06	60,2	10	CURB	D1B	53.2	10.6	1.21
D18	10+65	58	100] 10	8.74	0.38	3.3	53.2	58.5	2.640	0.78	0.42	0.009	LOWPT	1.06	\$3.2	10	CURB	LOWPT	45.9	10,6	1.21
C1A	11+10	6A	100) 10	8.74	0,45	3.9	0.2	4,1	4.150	0,34	0.42	0.007	LOWPT	0.61	6.8	10	CURB	C1B	0.0	4.1	0,47
Č18	11+10	69	100	10	8.74	0,19	1.7	0.0	1.7	4.160	0.24	0.42	0.007	LOWPT	0.36	4.5	10	CURB	LOWPT	0.0	1,7	0.19
C2	15+30	7	100	10	8,74	1.02	8.9	47.1	56.0	1.770	0.57	0.39	0.016	GRADE	0.79	71.2	10	CURB	DIA	48.1	7,9	0.90
C3	15+31	8	100	10	8.74	0.60	5.3	0.0	5,3	3,060	0.29	0,42	0.016	GRADE	0.51	10.3	10	CURB	CIA	0.2	5.1	0.58
C4	17+05	9	100	10	8,74	1,11	9.7	45.0	55.4	2,160	0.60	0.42	0.017	GRADE	0.82	67.1	10	CURB	C2	47,1	8.2	0.94
C5	18+40	10	100	10	8,74	3.82	33,4	19.6	53.0	1.260	0.52	0.28	0.012	GRADE	0.73	72.3	10	CURB	C4	45.6	7.3	0,84
Ce	19+90	11	100	10	8.74	0.80	7.0	19.5	26.5	1,770	0.48	0.39	0.009	GRADE	0,69	38.3	10	CURB	C5	19.6	6,9	0.79
<u>C7</u>	21+05	12	100	10	8,74	0,59	5.2	0,0	5.2	4,420	0.37	0.42	0.009	GRADE	0.58	6.9	10	CURB	<u>C3</u>	0.0	5.2	0.59
C8	WP ¹	27	100	10	8,74	0,34	2.9	0.0	2.9	6.250	0.32	0.42	0.013	GRADE	0.54	5.5	10	CURB	Ce	0.0	2.9	0.34
C9	WP ²	28	100	10	8,74	1.22	10.6	0.0	10.6	4,050	0,41	0.42	0.018	GRADE	0.62	17.0	10	CURB	Cô	4.4	6,2	0.71
C10	23+15	13	100	10	8.74	0.68	5.9	15,3	21.2	1.580	0.39	0,35	0,013	GRADE	0.61	34.9	10	CURB	C0	1 15.2	8 .1	0.70
C11	23+10	14	100	10	8.74	0.55	4.8	0.7	5.5	4.030	0.34	0,42	0.012	GRADE	0.56	9.9	10	CURB	C7	0.0	5.5	0.63
C12	24+90	15	100	10	8,74	1,18	10.3	11.2	21.5	1.650	0.40	0.37	0.013	GRADE	0.62	34.7	10	CURB	C10	15.3	5.2	0.71
C13	27+15	18	100	10	8.74	0,51	4.5	12.3	16.8	1,480	0.34	0.33	0.015	GRADE	0.56	30.0	10	CURB	C12	11.2	5,8	0.64
Č14	27+80	29	100	10	8,74	0.32	2.8	0.0	2.8	•	-	0.42	OFF RD	LOWPT	1.06	2.8	6	CURB	C13	0.0	2.8	0.32
C15	28+45	17	100	10	8.74	0.76	6.6	10,5	17.2	0.710	0.26	0.15	0.015	GRADE	0.49	35,4	10	CURB	C13	12.3	4.9	0.58
C16	28+60	18	100	10	8.74	0.34	2.9	3.5	6.4	3.970	0.35	0.42	0,015	GRADE	0,56	11.3	10	ÇURB	C11	0.7	5.6	0.65
C17	30+35	19	100	10	8,74	0,64	7.3	6.4	15.8	1,190	0.30	0.28	0,017	GRADE	0.52	30.3	10	CURB	C18	10.5	5.2	0.60
C18	31+40	20	100	10	8.74	0,62	5.4	5.1	10.5	4,740	0,49	0.42	0,009	GRADE	0.71	14.0	10	CURB	C18	3.5	7.1	0.81
C19	32+10	21	100	10	8,74	0.96	8,4	5.1	13.5	0.900	0.28	0.20	0.010	GRADE	0.50	26.7	10	CURB	C17	8.4	5.0	0.58
C201	GR	30	100	10	8,74	0.00	0.0	0.0	0.0	0.000		0.00	OFF RD	LOWPT	2.2	0.0	4	GRATE	C19	0.0	0.0	0.00
C21	35+90	23	100	10	8,74	1.31	11.5	0.0	11.5	2.900	0.42	0.42	0.009	GRADE	0.64	18.0	10	CURB	C18	5.1	6.4	0.73
C22	36+20	22	100	10	8.74	1.31	11.5	0.0	11.5	2.000	0.42	0.42	0.004	GRADE	0.64	17.9	10	CUR8	C19	5.1	6.4	0.73
C23	LB	25	100	10	8,74	0.48	4.0	0,0	4.0	3,400	0.27	0.42	0.018	GRADE	0,40	8.1	10	CURB	DIA	0.0	4.0	0.46
C24	LB ²	26	100	10	8.74	1.81	14.1	0.0	14.1	3,700	0.46	0.42	0.014	GRADE	0.67	20.8	10	CURB	D1A	7.3	6.7	0,77
Et	54+15	24	100	10	8.74	3.43	30.0	0.0	30,0	8.680	0.85	0.42	0.030	GRADE	0.89	33.8	10	CURB	1 2.00	21.1	8,9	1.02

1 COULD NOT VERIFY EXISTENCE IN FIELD OR FROM FIELD SURVEY; THEREFORE, ASSUME FOR CONSERVATIVENESS THAT THE FLOW ENTERS THE STREET AND ENTERS THE SYSTEM AT INLET C19. ALSO, SINCE THE PLANS CALL THIS A DOUBLE GRATE INLET, IT IS POSSIBLE THAT IT WILL BE CLOGGED BY DEBRIS DURING THE STORM AND THEREFORE, BE INEFFECTIVE.

2 INLETS OFF OF MIDWAY: WP WILEY POST

*

LB LINDBERG

GR GRATE INLET

MIDWAY ROAL INSTRUCTION

EXISTING STORM SEWER SYSTEM

L,						,						STORM	SYSTEM CA	LCULAD	ONS - LATERA	L LINES C	N MAIN LI	NE								-	·		
				POMTS							z	PIP	e oesoript	NON		HYDR		HE	AD LOBB AT	CHANGE	IN SECT	ION							INVERTAT
		MANH	LE OR INLET	ACE No.		3	TIME OF CON	1	- Č	È	TOTAL DESKON DISCHARDE					GRADIE		UP-	DOWN	<u> </u>			-	ELEV. OF TOP OF	1				IN POINT
		58	ign point	DISTANCE	0.CerA	TOTAL	INLET TIME I		DESIGN	INTEMBOTY	01AL M9CH	SLOPE PER PLANS	MATERIAL	BUZE	PRICTION GRADIENT SLOPE SI	TREA	OWIN.	STREAM VELOCITY	VELOCITY				H.D. ELES AT DESIG POINT	N DESIGN	TOTAL C"Ce"A INTO MAIN LINE	TIME TO MAIN		UP- STREAM PIPE	DOWN- STREAM PIPE
LATERAL NUMBER	INLE NUMBI	r UP-	DOWN-	(1)	Ť		(min) (min)	(min)		(inter)	 (ಲೆಕ)	(1580)	MATERIAL	- Grab	(%)	<u>ວ</u> ກ (11)	<u>00</u> (11)	Vi (fps)	(†24)	(0)	<u>v,∿2</u> ; (8)		1	(ft)	(cfa)	(min)	(8)	80	(1)
LAT A1	A1		0	21	0.703	0.703	10 0.0	10.0	100	8.74	6,1	0.103	RCP	21	0.0015	616.59	616.56	2.6	2.6	0.1	0.1	0.5 0	1 616,59	617.60	0.703	10,137	1.01	613.78	611.62
LAT B1								10.1	100		6,1	0.103	RCP	21		816.56		2.5	1,2	0.1	0.0	0.5		617.60	0.703	10.137	1.04	611,62	611.62
	81	- 68 - 0	0	0	1.028	1.028	<u>10 0.0</u> - 0.4	10,0	100	<u>8.74</u> 8.57		0.033	RCP	21 21	0.0032				3.7 3.7	0.2		0.5 0				10,392	3.91 4,19	817,71 614.80	
LAT 02	<u> 62</u>		0		0,324			10,0	100	8.74		0.065	RCP	18	0.0007				1.6			0.5 0				10,104	1.91		
147 753	20	0	0	0		0.324	- 0,1	10.1	100	8.72	2.8	0.065	RCP	18	0.0007				1.2	0.0		0.5 0		619.77	0.324	10,104	1.92	615.45	
LAT 93	83	10 0	0	10 0		0.414		10.0 10.1	100	8.74 8.72	3.6 3.6	0.08	RCP	21 21	0.0005		617.08		1.5	0.0		0.5 0			0.414 0.414	10,111		612.72 611.92	
LAT CIA	C1/		0	62		0.469			100			0.023	RCP	21	0.0007				1.7	0.0			.0 617.22		0.469	10.600		614.85	
	0.46	0	0	Ö		0.469		10.8	100	6.60	-		RĊF	21					5.4			0.50				10.605		613.42	
LAT CIB	C1E	B <u>62</u> C	0	62 0	0,189	0.189		10.0 11.5	100	8.74 8.35	1.7 1.6	0.023	RCP RCP	21 21	0.0001		617.02 617.02		0.7 5.5	0.0		0.5 0	.0 617.03 .2 617.02			11.505	1.25	614.80 613.36	613.36 613.36
LAT C2	C2		0	<u>0</u> 1	0.9	0,9	10 0.0	10.0	100	8.74	7.9	0.038		21	0.0025		618.50		3.3	0.2			1 618.65			10.311	3,30	617.72	
		0	0	0		0.9	- 0.3	10.3	100	8.67	7,8	0.038	RCP	21	0.0024				5,0	0.2			2 618.50	1		10.311	3.45	615.43	1
LAT C3	<u></u>	3 31	0	31	0.584	0.584	10 0,0 • 0.2	10.0 10.2	100	6.74 6,69		0.034	RCP RCP	21	0.0010 0.0010		618.67 618.67		2.1 4.5	0.1			01 618.70 2 618.67			10.244	2.33 2.36	616.57 615.51	
LAT C4	Ç4		0	64	0.943	0,943			100	8,74	0.2		RCP	21	0.0027		818,92		3.4	0.2			619.10				4,95		616,81
		0	0	0		0.943		10.3	100	8,67	8.2	0.053	RCP	21	0.0027		818.92		6.9	0.2	0.7	0.5 0				10,311	5,13		616,B1
LATICS	<u></u>	5 64 0	0	64	0.838	0.838		<u>10.0</u> 10.4		8.74	7.3 7.3	0.065		21 21	0.0021	619.74 619.61			3.0 6.4	0.1	0,1 0.6	0.5 0 0.5 0				10.350	<u>6,88</u> 7.01	622.66 618.51	618.51 618.51
LAT C6	C6		0	64		0.793		10.0	100			0.082		21	0.0010				2.9	0.1	D.1	_				10.370	6,94		620.39
		0	0	0		0,793		10,4	100					21	0.0019				5.9	0.1	0,5					10.370	7,06	620.39	
LAT C7	<u>C7</u>	7 <u>34</u> 0	0	34 0		0.592		10.0 10.3	100			0.071		21 21	0.0011		622.62 622.62		2.2 5.5	0.1		0.5 0		628.57 628.57		10.263	<u>5.92</u> 5.95	624.39 621.98	
LAT C8	Cð		Ó	34		0.338		10.0	100			0.008		18	0.0008				1.7	0,0			0.0 624.37			10,341	675	629.27	
		Ű	0	0	· · · ·	0.336		10.3		8.67	2.9	0.008	RCP	18	8000.0	624.35			3,8	0.0	0.2	0.5 0	0.1 624,34	631.12		10.341	6,77		628,99
LAT CU	C9 C8		2 <u>61</u> 0	33.32	0.714			10.0	100	8.74 8.67	6.2 9.1	0.02		21 21	0.0015		624.35 624.08		2.6	0.1	0,1 0.2	0.5 (10,698	6.88 6.77	628.15 627,49	627.49 623.44
		Û	0	Į Q		1.05	- 0.4	10,7	100	8.60	9.0	0.0500	RCP	21	0.0000	624.08	624.08	3.8	5.2	1 0,2	0,4	0.5 (624.08	631.28	1.050	10.698	7,20	623.44	623.44
LAT C10	C1(0 <u>64</u> 0	0	64 0	0.696	0.696		10.0	100 100	8.74 8.64	8,1 6,0	0.049		21	0.0015	625.17			2.5	0.1		0.5 (10.422	5.96 6.06	627.59 624.44	624.44 624.44
LATCI	C1	1 34	0	34	0.635	0.635		10.0	100			0.039		21	0,0012	-			2.3	0.1			0.0 625.2			10.246	4.71	625,93	
		0	0	0	I	0.635		10.2	100	8,69	5.5	0.039	RCP	21			625.21		4,1	0.1	0.3	0.5 (0.1 625.21	629,96	0.635	10.248	4.75	624.60	624.60
LAT C12	C1	2 64		<u>64</u> 0		0.709		10.0	100	8.74		0,035		21 21	0.0015				2.6 5.0	0.1		0.5				10.414 10,414	5.29	628.74 625.48	
LAT CI3	C1		0	64	0.64		·	10,0		8.74		0.04		21	0.0012					1	1		0.0 629.66		1		5,58	631.30	
		0	0	0	1	0,64		10.5	100		5.5			21	0.0012		629.60		4.8	0.1		0.5 (10,458	5.66	628.72	
LAT C14	C1	4 70	0	70	0.315	0.315		10.0	100			0.038		21 21	0.0003		830.67 630.67		1.1	0.0		0.5 0	0.0 630.6				5.91 5.93	632.25 629.61	
LAT C15	C1			64	0.556	0.556			100			0.039		· · · · ·	0.0009			· · · · · · · · · · · · · · · · · · ·	2.0			0.5				10.528	5.35	632.76	
			0	0	1	0.556				0.74		0.039		21	0.0009					0,1			0 831.3			10.528	5,41	630.27	


~~~

### EXISTING STORM SEWER SYSTEM

| MARHOL OBJRET         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                  |                | 1                                             |             |            |            |                             |           |                 |              |                  |      |      |        |                     |          |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        |       |            |          |                                        |     | 1         |        | 5    | 5          |   |          |      |        |     |             |               |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|----------------|-----------------------------------------------|-------------|------------|------------|-----------------------------|-----------|-----------------|--------------|------------------|------|------|--------|---------------------|----------|-------------------|-----|-------------|------------|----------|---------------|------|--------|------|------------|--------|--------|-------|---------|----------|----------|-----------|---|--------|------------|--------|-------|------------|----------|----------------------------------------|-----|-----------|--------|------|------------|---|----------|------|--------|-----|-------------|---------------|--------------------|
| ATTULE         BUTCL         DOWL         (mn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELEV. OF<br>DESIG     | £                |                |                                               |             |            |            | elev. of                    |           |                 |              | 4                | TION | SECT | E 14 : | :HANGE              | AT CH    | LOSS AT           | EVO | HE          |            |          |               |      |        |      | PM         | RIPTIC | DESCRI | PIPE  | PI      |          | NDIS     |           |   | Շ      | N          | RATION | CENTR | CONC       | e of     | TIME                                   |     | 1 S       |        |      | Nic        | t | RINLET   | LÉOR | MANHOL |     |             |               |                    |
| ATTENDA         BURK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UP.<br>STREAN<br>PIPE | . 8              | CURB -         | r ¢                                           | THE TO MAIN | TOT        | C'Ca'A INT | TOP OF<br>CURB AT<br>DESIGN | ∕, 1<br>≈ | AT DESIGN       |              | q. n             | ĸ    | 1/20 | v      | V, <sup>3</sup> /2g | A<br>Y   | STREAM<br>ELOCITY | M   | STREAM      |            | DOWN-    | UP.<br>GTREAK | .do  | ADIENT | QR,  | 6126       |        | MATERU | ιĮ.   | PER     | DISCHARG | TOTAL DE | INTENSITY |   | DESIGN |            | STREAM |       |            |          |                                        |     | TOTAL C'6 | C'OM'A |      | DISTANCE   |   |          |      | 085kg  |     |             |               |                    |
| 0         0         0         0.6445         -         0.2         10.2         10.0         18.89         5.8         0.033         RCP         21         0.0013         631.60         23         4.7         0.1         0.3         0.5         0.2         631.60         633.50         0.6445         10.242         4.30           AT C17         C41         0         64         0.596         10         0.0         10.0         10.0         874         5.2         0.0448         RCP         21         0.0011         634.18         2.1         5.8         0.1         0.5         0.5         0.5         10.5         10.0         8.72         1.74         8.80         633.601         2.9         2.1         0.1         1.5         6.5         0.1         0.5         0.5         0.5         10.483         5.82         0.001         634.618         634.01         2.9         2.1         0.1         0.1         0.5         0.5         0.61         10.142         4.78           0         0         0.576         10.2         10.2         10.0         10.2         10.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ft)                  |                  | (11)           |                                               | (min)       |            | (cfu)      | (m)                         | Τ         | (ft.)           | N)           | (A               |      | (11) |        | ( <b>7</b> 1)       |          | (ipe)             |     | (îp#)       | , <b>Г</b> | (11)     | <b>(11)</b>   |      | 60     |      | (în)       |        |        | T     | (59)    |          |          | (ntr)     | • | (yomr) | ,          | (min)  |       | (min)      |          | (mis)                                  | 0   |           |        |      | (A)        |   |          |      | UP.    | R 8 |             |               |                    |
| AT C17       C17       C4       0       64       0.596       10       0.0       100       100       8.7       5.2       0.048       RCP       21       0.0011       634.25       634.18       2.2       2.2       0.1       0.1       0.5       0.5       0.2       634.18       5.99         AT C18       C18       34       0       34       0.81       0.81       0.81       0.81       0.87       7.1       0.053       RCP       21       0.0011       634.618       2.8       0.1       0.5       0.5       0.2       634.18       840.17       0.596       10.483       5.99         AT C18       C18       34       0       34       0.81       0.81       0.81       0.81       0.81       0.81       0.81       0.872       7.1       0.053       RCP       21       0.0020       638.681       638.01       2.8       4.7       0.1       0.5       0.5       0.2       634.05       0.610       6.05       0.64       0.576       0.690       0.676       0.576       0.690       0.676       0.576       0.690       6.12       6.12       0.1       0.1       0.1       0.056       0.616       6.16       0.696 <td>631.60</td> <td>Ē</td> <td>4.26</td> <td></td> <td>10.242</td> <td>;</td> <td>0.645</td> <td>635,90</td> <td></td> <td>631.64</td> <td>0</td> <td>5 0</td> <td>0.5</td> <td>0,1</td> <td>(</td> <td>0.1</td> <td></td> <td>2.3</td> <td></td> <td>2,3</td> <td>.60</td> <td>631.6</td> <td>31,64</td> <td>63</td> <td>0013</td> <td>Ö.</td> <td>21</td> <td>5</td> <td>RCP</td> <td>8</td> <td>0.035</td> <td>e</td> <td>5.</td> <td>8.74</td> <td></td> <td>100</td> <td>5</td> <td>10.0</td> <td>- f</td> <td>0.0</td> <td>Ť</td> <td>10</td> <td>45</td> <td>0.64</td> <td>645</td> <td>0.</td> <td>34</td> <td>T</td> <td>0</td> <td>Г</td> <td>34</td> <td></td> <td>Ç18</td> <td>216</td> <td>AT C</td>                      | 631.60                | Ē                | 4.26           |                                               | 10.242      | ;          | 0.645      | 635,90                      |           | 631.64          | 0            | 5 0              | 0.5  | 0,1  | (      | 0.1                 |          | 2.3               |     | 2,3         | .60        | 631.6    | 31,64         | 63   | 0013   | Ö.   | 21         | 5      | RCP    | 8     | 0.035   | e        | 5.       | 8.74      |   | 100    | 5          | 10.0   | - f   | 0.0        | Ť        | 10                                     | 45  | 0.64      | 645    | 0.   | 34         | T | 0        | Г    | 34     |     | Ç18         | 216           | AT C               |
| 0         0         0         0.5         10.5         100         0.64         5.2         0.048         RCP         21         0.011         634.18         2,1         5.8         0.1         0.5         0.5         0.2         0.493         5.99           IT C18         21         0.34         0.81         0.91         10         0.9         1.02         100         8.72         7.1         0.053         RCP         21         0.0020         638.01         2.9         2.1         0.3         0.5         0.2         638.01         6.4         0.576         0.610         10.192         4.79           0         0         0         0.576         10         0.0         100         8.72         7.1         0.053         RCP         21         0.0020         638.671         538.67         2.1         2.1         0.1         0.3         0.5         0.2         64.0.576         10.55         10.5         10.5         10.5         10.5         10.5         10.5         0.576         10.509         6.12           0         0         0         0.576         10.50         10.6         8.62         6.0         0.47         RCP         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 630.60                | E                | 4,30           | Ľ,                                            | 10.242      | i          | 0.645      | 635.90                      |           | 631.60          | .2           | 5 0.             | 0.5  | 0.3  | 1      | 0.1                 |          | 4.7               |     | 2.3         | .60 [      | 631.6    | 31.60         | 63   | 0013   | 0.   | 21         | 2      | RCP    | 5     | 0.035   | .6       | 5.       | 8,69      | 1 | 100    | 5          | 10,2   |       | <u>0,2</u> |          | -                                      | 45  | 0.64      |        | 1    | û          | 1 | Û        |      | Ō      |     |             |               |                    |
| 0         0         0         0.55         10.5         100         0.64         5.2         0.048         RCP         21         0.0011         634.18         634.18         2.1         5.8         0.1         0.5         0.5         0.2         0.483         5.99           TC18         24         0         34         0.81         0.81         0         10.0         100         8.74         7.1         0.053         RCP         21         0.0020         638.01         2.9         4.7         0.1         0.5         0.5         0.610         10.192         4.76           0         0         0.811         0.21         100         8.72         7.1         0.053         RCP         21         0.0020         638.61         636.01         2.9         4.7         0.1         0.3         0.5         0.2         636.71         64.0         0.3         0.5         0.2         636.71         636.67         2.1         2.1         0.010         636.73         636.67         2.1         2.1         0.1         0.5         0.1         636.73         636.77         2.1         3.4         0.1         0.2         0.576         10.509         6.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | يعجب             |                |                                               |             | ,          |            |                             |           |                 |              |                  |      |      | _      |                     |          |                   |     |             |            |          |               |      |        |      |            |        | - 4-   |       |         |          |          |           |   |        |            |        | _     |            |          |                                        |     |           | -      |      |            |   | _        | -    |        | _   | 045         |               | -                  |
| T C18       34       0       34       0.81       0.81       10       0.0       100       8.74       7.1       0.053       RCP       21       0.0020       658.68       658.61       2.8       2.0       0.1       0.1       0.5       0.810       0.810       10.1122       4.76         0       0       0       0.576       10       0.2       100       8.72       7.1       0.653       RCP       21       0.0020       658.67       2.1       2.1       0.1       0.3       0.5       0.2       636.01       640.87       0.810       10.1122       4.86         TC19       64       0       64       0.576       10       0.0       10.0       10.0       8.72       7.1       0.653       RCP       21       0.0016       658.67       2.1       2.1       0.1       0.1       0.5       642.85       0.576       10.509       6.12         0       0       0       0.576       10.5       10.0       10.0       8.62       5.0       0.647       RCP       21       0.0016       641.60       841.74       2.6       2.6       0.1       0.1       0.5       0.576       10.509       6.12       0.0016 <td>636.24<br/>633.30</td> <td></td> <td>.596</td> <td>-10.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CTZ</td> <td>패</td> <td>n ç</td>                                                                                                                                                  | 636.24<br>633.30      |                  |                |                                               |             |            |            |                             |           |                 |              |                  |      |      |        |                     |          |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        |       |            |          |                                        |     |           | .596   | -10. |            |   |          |      |        |     | CTZ         | 패             | n ç                |
| 0         0         0.81         -         0.2         100         8.72         7.1         0.033         RCP         21         0.020         638.01         2.9         4.7         0.1         0.3         0.5         0.2         638.07         0.102         4.86           TC19         64         0         64         0.576         10         0.0         100         8.74         5.0         0.047         RCP         21         0.0010         636.67         2.1         2.1         0.1         0.1         0.1         0.5         642.85         0.576         10.500         6.12         0.501         636.67         2.1         2.1         0.1         0.1         0.1         0.5         0.0         6.12         0.0010         636.67         2.1         2.1         0.1         0.1         0.1         0.6         642.85         0.576         10.500         6.12         0.501         636.67         2.1         2.0         0.5         0.1         0.1         0.2         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 033,30                | <u> </u>         | -⊒ <b>≂</b> ⇔# | <u>i i i i i i i i i i i i i i i i i i i </u> | 10,493      | , ,        | 1 0.020    | 040.11                      | 1         | 0.241.110       | . <u>.</u> [ | u je.            | V.2  | 0,3  |        | V.1                 |          | 2.0               |     | 2,1         | .101       | \$2,74,1 | 29,101        | 103  |        | Į Ų. | 21         | - 1    | NUP    | 0]    | 0.040   | ιE. S    | 1 A.     | 0.04      |   | 100    | ₹          | 10.7   | ł     | 0.2        | 1        | • 1                                    | aot | 0.00      |        |      | v          |   |          |      | Ý.     |     |             |               |                    |
| T C19       C19       64       0       64       0.576       10       0.0       10.0       8.74       5.0       0.047       RCP       21       0.0010       636.73       636.67       2.1       2.1       0.1       0.1       0.5       10.5       10.576       10.596       6.12         0       0       0       0.576       10.5       10.5       10.0       8.62       5.0       0.047       RCP       21       0.0010       636.73       636.67       2.1       3.4       0.1       0.2       0.50.6       642.85       0.576       10.509       6.12         0       0       0       0.728       0.22       10.0       10.0       8.64       0.014       RCP       21       0.0016       641.80       841.74       2.6       2.6       0.1       0.1       0.5       0.5       0.240       3.49         0       0       0       0       0.728       10.2       10.6       8.64       0.0014       RCP       21       0.0016       641.74       2.6       2.6       0.1       0.1       0.5       0.5       10.20       0.576       10.20       0.576       10.20       0.576       10.20       0.576       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 636.93                | 1                | 4,79           |                                               | 10.192      | <u>;</u> ] | 0.810      | 640.87                      |           | 636.06          | .1           | 5 0.             | 0.   | 0.1  |        | 0.1                 |          | Z.9               | 1   | 2.9         | ,01        | 638,0    | 36.08         | 63   | 0020   | Ô.   | 21         | 2      | RCP    | 31    | 0.053   | .1       | 7,       | 8,74      |   | 100    | 5 1        | 10.0   | 1     | 0.0        | Т        | 10                                     | 1   | 0.81      | 0.01   | Q    | 34         |   | 0        |      | 34     |     | Ċ18         | 218           | ТС                 |
| 0         0         0         0.576         -         0.5         105         100         8.62         50         0.047         RCP         21         0.0010         636.67         636.67         2.1         3.4         0.1         0.2         0.5         0.1         638.67         642.65         0.576         10.509         6.18           T C21         C21         38         0         38         0.728         0.728         0.0         100         8.74         6.4         0.014         RCP         21         0.0016         641.74         2.6         2.8         0.1         0.1         0.2         0.56         10.549         10.240         3.49           0         0         0         0.728         0.2         100         100         8.74         6.4         0.014         RCP         21         0.0016         641.74         2.6         4.0         0.1         0.2         0.51         0.1         642.08         641.74         2.6         2.0         0.1         0.1         0.26         0.728         0.728         0.728         0.728         0.733         0.733         0.733         10.240         3.55           1022         0.23         0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 635.14                | e                | 4.88           |                                               | 10,192      |            | 0.810      | 640.87                      |           | 636, <b>D</b> 1 | .2           | .5 Q.            | Ō.   | 0.3  |        | 0.1                 | 1        | 4.7               | T.  | 2.9         | .01        | 638.0    | 38,01         | 63   | 0020   | Ō.   | 21         | PJ     | RCP    | 3     | 0.053   | .1       | 7.       | 8.72      |   | 100    | 2 T        | 10.2   |       | 0.2        | ]        | •                                      |     | 0.81      |        |      | 0          |   | Q        | 1    | 0      | T   |             |               |                    |
| 0         0         0         0.576         -         0.5         10.5         100         8.62         5.0         0.047         RCP         21         0.0010         636.67         2.1         3.4         0.1         0.2         0.5         0.1         636.67         10.5         0.1         0.509         5.16           C21         221         36         0         38         0.728         0.728         0.0         10.0         10.0         6.4         0.014         RCP         21         0.0016         641.74         2.6         2.6         0.1         0.1         0.2         0.5         0.1         641.80         641.74         2.6         2.6         0.1         0.1         0.2         0.5         0.1         642.06         641.74         2.6         2.6         0.1         0.1         0.2         0.5         0.1         642.06         641.74         2.6         2.6         0.1         0.1         0.5         0.1         642.06         641.74         641.74         645.29         0.728         10.240         3.5           10.2         0.2         0.2         10.0         10.0         8.74         6.4         0.008         RCP         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | <u>لمج</u>       | <b></b>        | يعجك                                          |             |            |            |                             |           |                 |              |                  |      |      |        |                     |          |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        | . ,   |            |          |                                        | ,   |           |        |      |            | - |          | -    |        | -   |             |               |                    |
| T C21       C21       38       0       38       0.728       0.728       0.0       100       100       8.74       6.4       0.014       RCP       21       0.0016       641.60       641.74       2.6       2.6       0.1       0.1       0.2       0.5       0.1       641.20       643.29       0.728       10.24       3.49         T C22       C22       57       0       57       0.733       0.0       10.0       10.0       8.69       6.3       0.014       RCP       21       0.0016       641.74       2.6       4.0       0.1       0.2       0.51       641.74       645.29       0.728       10.240       3.55         T C22       C22       57       0       57       0.733       0.733       10       0.0       10.0       10.0       8.74       6.4       0.008       RCP       21       0.0016       641.96       841.96       2.7       2.7       0.1       0.1       0.5       0.6       645.37       0.733       10.357       3.31         T C23       C23       48       0       4.0       0.029       RCP       18       0.0014       618.53       2.3       2.3       0.1       0.1       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 639,13<br>636.12      |                  |                |                                               |             |            |            |                             |           |                 |              |                  |      |      |        |                     |          |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        | -+-   |            | -        | 10                                     |     |           |        | 10.  |            | - | 2        | +    |        | _   | CIS         | 519           | 19                 |
| 0         0         0         0.728         0.2         102         100         8.69         6.3         0.014         RCP         21         0.0016         641.74         2.6         4.0         0.1         0.2         0.51         641.74         645.29         0.728         10.240         3.55           T C22         C22         57         0         67         0.733         0.01         10.0         10.0         10.0         10.0         8.74         5.4         0.008         RCP         21         0.0016         641.74         2.6         4.0         0.1         0.51         641.74         645.29         0.733         10.357         3.31           0         0         0.733         .0.4         10.4         10.0         8.67         6.4         0.008         RCP         21         0.0016         641.96         2.6         2.0         0.1         0.1         0.51         0.641.96         645.37         0.733         10.357         3.31           10.23         C23         48         0         44         0.008         8.74         4.0         0.029         RCP         18         0.0014         618.43         2.3         2.3         0.1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.29,12               |                  | 0.10           |                                               | 10.509      | > (        | 0.910      | 042,65                      |           | 030.0/          | .1           | .5 . 4.          | 0.3  | U,Z  | 1 1    | 0.1                 |          | 3.4               |     | <u>4.</u> 1 | .67        | 636.0    | 36.67         | 63   | 0010   | 9    | 21         |        | HÇP    |       | 0.047   | .0       | 5        | 8.62      |   | 100    | 5 <u>j</u> | 10,5   |       | 0,5        | 1        | <u> </u>                               | 70f | 10.37     |        |      | <u> </u> u |   | ų        |      | ų      |     |             | 1             |                    |
| 0         0         0         0.728         ·         0.2         102         100         8.69         6.3         0.014         RCP         21         0.0016         641.74         2.6         4.0         0.1         0.2         0.5         0.728         10.240         3.55           TC22         C72         57         0         57         0.733         .0         0.9         10.0         100         8.74         5.4         0.008         RCP         21         0.0016         641.74         2.6         4.0         0.1         0.5         0.1         642.06         645.37         0.733         10.357         3.31           0         0         0.733         .0.4         10.4         100         8.67         6.4         0.008         RCP         21         0.0016         641.96         2.6         2.0         0.1         0.1         0.51 0.0         641.53         0.733         10.357         3.31           10.23         C23         48         0         48         0.456         0.455         10.0         10.0         10.0         0.029         RCP         18         0.0014         618.43         2.3         2.3         0.1         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 641.29                |                  | 3.49           |                                               | 10,240      | 8          | 0.728      | 645.29                      |           | 641,50          | 1            | 5 0.             | 0.   | 0.1  |        | 0.1                 |          | 2.6               |     | 2.6         | 74         | 641.7    | 41.60         | 64   | 0016   | 0    | 21         |        | RCP    | 4     | 0.014   | 4        | 6.       | 8.74      |   | 100    | 0 [        | 10.0   |       | 0.0        | T        | 10                                     | 281 | 0.72      | .728   | Το.  | 38         |   | 0        |      | 38     |     | C21         | 21            | ΤĊ                 |
| 0         0         0         0         0.733         0.4         10.4         10.0         8.67         6.4         0.008         RCP         21         0.0016         641.96         24.6         2.0         0.1         0.1         0.5         0.0         641.95         645.37         0.733         10.357         3.41           T C23         C23         48         0         48         0.456         0.4         10.0         10.0         10.0         10.0         20.0         RCP         18         0.0014         618.50         618.43         2.3         2.3         0.1         0.1         0.5         0.0         618.50         621.99         0.456         10.355         3.49           0         0         0         0         0         0         0.4         10.4         100         8.67         4.0         0.029         RCP         18         0.0014         618.43         2.2         4.4         0.1         0.5         0.0         618.52         618.43         2.2         4.4         0.1         0.5         0.0         618.52         618.43         2.2         4.4         0.1         0.5         0.0         618.52         612.99         0.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 640.74                | , 1              | 3.55           |                                               | 10,240      | 9          | 0.728      | 645.29                      | Ì         | 641.74          | .1           | .5 0.            | 0.   | 0.2  |        | 0.1                 | 1        | 4.0               |     | 2.6         |            |          |               |      |        |      | 21         |        |        | 4     | 0,014   | 3        | 6.       | 8.69      |   | 100    | 2          | 10.2   |       | 0.2        | 1        | •                                      | 28/ | 0.72      |        |      | 0          |   | 0        | 1    | Û      |     |             |               |                    |
| 0         0         0         0         0.733         0.4         10.4         10.0         8.67         6.4         0.008         RCP         21         0.0016         641.96         24.6         2.0         0.1         0.1         0.5         0.0         641.95         645.37         0.733         10.357         3.41           T C23         C23         48         0         48         0.456         0.4         10.0         10.0         10.0         10.0         20.0         RCP         18         0.0014         618.50         618.43         2.3         2.3         0.1         0.1         0.5         0.0         618.50         621.99         0.456         10.355         3.49           0         0         0         0         0         0         0.4         10.4         100         8.67         4.0         0.029         RCP         18         0.0014         618.43         2.2         4.4         0.1         0.5         0.0         618.52         618.43         2.2         4.4         0.1         0.5         0.0         618.52         618.43         2.2         4.4         0.1         0.5         0.0         618.52         612.99         0.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                |                                               |             |            |            |                             |           |                 |              |                  |      |      |        |                     | <u> </u> |                   |     |             |            |          |               |      |        | ĺ.   |            |        |        |       |         |          |          |           |   |        |            |        | ۰,    |            |          |                                        |     |           |        |      |            |   |          |      |        | _   |             |               |                    |
| TC23       C23       48       0       48       0.456       0.456       10       0.0       100       8.74       4.0       0.029       RCP       18       0.0014       618.50       618.43       2.3       2.3       0.1       0.1       0.5       0.0       618.50       621.99       0.456       10.355       3.49         0       0       0       0.456       0.4       10.4       100       8.67       4.0       0.029       RCP       18       0.0014       618.43       2.3       2.3       0.1       0.1       0.5       0.0       618.50       621.99       0.456       10.355       3.49         1224       C24       09.3       52       47.3       0.772       0.772       10       0.0       10.6       8.74       8.7       0.029       RCP       18       0.0014       618.43       2.8       2.8       0.1       0.1       0.5       0.0       618.52       622.13       1.228       10.355       3.66         1C24       C24       0.90.3       52       47.3       0.772       0.772       10       0.0       10.6       8.74       8.70       0.029       RCP       21       0.0018       618.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 641.41                |                  |                |                                               |             |            |            |                             |           |                 |              |                  |      |      |        |                     |          |                   | _   |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        |       |            |          | 10                                     |     |           |        | 10   |            |   | <b>F</b> | 4-   |        |     | <u>C</u> 22 | 222           | JC                 |
| 0         0         0         0.456         0.4         10.4         100         8.67         4.0         0.029         RCP         18         0.0014         618.43         618.43         2.2         4.4         0.1         0.3         0.5         0.2         618.43         621.99         0.456         10.355         3.56           T C24         C24         99.3         52         47.3         0.772         0.772         10         0.0         100         8.74         6.7         0.029         RCP         21         0.0018         618.52         618.43         2.8         2.8         0.1         0.1         0.5         0.1         618.52         622.13         1.228         10.551         3.61           C23         52         0         52         0.456         10.4         0.3         10.4         100         8.67         10.6         0.029         RCP         21         0.0045         618.43         618.52         618.43         618.52         618.43         62.13         1.228         10.551         3.61           0         0         0         0         0.20         10.6         10.06         0.029         RCP         21         0.0000 <t< td=""><td>640.97</td><td></td><td>3.41</td><td></td><td>10.357</td><td>3</td><td>4,733</td><td>645,37</td><td></td><td>041.90</td><td>.01</td><td>5 0.</td><td>0.</td><td>0.1</td><td></td><td>9.1</td><td>ļ</td><td>2.0</td><td></td><td>2.6</td><td>.901</td><td>641.5</td><td>41.96</td><td>1 64</td><td>0016</td><td>10</td><td>21</td><td>P (</td><td>RCP</td><td>184 J</td><td>0.008</td><td>4</td><td>0.</td><td>3.57</td><td></td><td>100</td><td>4 Į</td><td>10,4</td><td></td><td>0.4</td><td>ł</td><td></td><td>33[</td><td>0.73</td><td></td><td>1</td><td>0</td><td></td><td>0</td><td>ł</td><td>ų</td><td></td><td></td><td></td><td></td></t<> | 640.97                |                  | 3.41           |                                               | 10.357      | 3          | 4,733      | 645,37                      |           | 041.90          | .01          | 5 0.             | 0.   | 0.1  |        | 9.1                 | ļ        | 2.0               |     | 2.6         | .901       | 641.5    | 41.96         | 1 64 | 0016   | 10   | 21         | P (    | RCP    | 184 J | 0.008   | 4        | 0.       | 3.57      |   | 100    | 4 Į        | 10,4   |       | 0.4        | ł        |                                        | 33[ | 0.73      |        | 1    | 0          |   | 0        | ł    | ų      |     |             |               |                    |
| 0         0         0         0.456         0.4         104         100         8.67         4.0         0.029         RCP         18         0.0014         618.43         2.2         4.4         0.1         0.3         0.5         0.2         618.43         621.99         0.456         10.355         3.56           17 C24         C24         99.3         52         47.3         0.772         0.772         10         0.0         100         8.74         8.7         0.029         RCP         21         0.0018         618.52         618.43         2.8         2.8         0.1         0.1         0.5         0.1         618.52         622.13         1.228         10.551         3.61           C23         52         0         52         0.456         10.4         0.3         10.4         100         8.67         10.6         0.029         RCP         21         0.0045         618.43         618.30         4.4         4.4         0.3         0.5         0.2         618.43         622.13         1.228         10.551         3.70           0         0         0         0.2         10.6         0.029         RCP         21         0.0004         618.20<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 618.04                |                  | 3.49           | -                                             | 10.355      | 5          | 0.456      | 621 99                      | )         | 618 50          | ١n           | 15/0             | 0    | 6.1  |        | 01                  |          | 23                | 1   | 23          | 63         | 818      | 18 50         | 61   | 0014   | 0    | 18         | 0      | RCP    | 144   | 0 026   | 0        | 4        | 8.74      |   | 100    | n 1        | 10.0   | - T   | ń n        | ł        | 10                                     | ts! | 0 45      | 456    | 10   | 48         |   | 0        |      | 48     | 1   | C23         | 23            | TC                 |
| C23         52         0         52         0.456         1.228         10.4         0.0         10.6         0.029         RCP         21         0.0045         618.43         618.20         4.4         4.4         0.3         0.3         0.5         0.2         618.43         622.13         1.228         10.551         3.70           0         0         0         1.228         0.2         10.6         10.0         8.62         10.6         0.029         RCP         21         0.0000         618.20         4.4         4.4         0.3         0.3         0.5         0.2         618.43         612.13         1.228         10.551         3.93           IT D1A         32         0         32         1.214         1.214         10         0.0         10.0         8.72         10.6         0.015         RCP         21         0.0045         618.44         618.30         4.4         4.4         0.3         0.3         0.5         0.2         618.44         618.30         4.4         4.4         0.3         0.3         0.5         0.2         618.44         618.30         4.4         4.4         0.3         0.3         0.5         0.2         618.44         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 615.64                |                  |                |                                               |             |            |            |                             |           |                 |              |                  |      |      |        |                     |          |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        |       |            | 1-       | . 1                                    |     |           |        | 1.   | 0          |   | 0        | 1    | Q      | 1   |             | Ť             | 1.0 <del>.</del> 7 |
| C23         52         0         52         0.456         1.228         10.4         0.0         10.6         0.029         RCP         21         0.0045         618.43         618.20         4.4         4.4         0.3         0.3         0.5         0.2         618.43         622.13         1.228         10.551         3.70           0         0         0         1.228         0.2         10.6         10.0         8.62         10.6         0.029         RCP         21         0.0000         618.20         4.4         4.4         0.3         0.3         0.5         0.2         618.43         612.13         1.228         10.551         3.93           IT D1A         32         0         32         1.214         1.214         10         0.0         10.0         8.72         10.6         0.015         RCP         21         0.0045         618.44         618.30         4.4         4.4         0.3         0.3         0.5         0.2         618.44         618.30         4.4         4.4         0.3         0.3         0.5         0.2         618.44         618.30         4.4         4.4         0.3         0.3         0.5         0.2         618.44         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                  |                | ي بينيا ا                                     |             |            |            |                             |           |                 |              |                  |      |      |        |                     |          |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        |       |            |          |                                        |     | <u>.</u>  |        |      |            |   |          |      |        |     |             |               |                    |
| 0         0         0         1.228         -         0.2         10.6         100         8.62         10.6         0.029         RCP         21         0.0000         618.20         4.4         5.4         0.3         0.5         1.5         0.7         618.20         622.13         1.228         10.551         3.93           T D1A         32         0         32         1.214         1.214         10         0.0         100         8.74         10.6         0.015         RCP         21         0.0045         618.44         616.30         4.4         4.4         0.3         0.3         0.5         0.2         618.44         618.92         1.214         10.121         0.48           0         0         0         1.214         0.1         100         8.72         10.6         0.015         RCP         21         0.0045         618.30         4.4         4.4         0.3         0.3         0.5         0.2         618.44         618.92         1.214         10.121         0.48           0         0         0         1.214         0.1         10.6         0.015         RCP         21         0.0045         618.30         618.30         4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 618.03                |                  |                |                                               |             |            |            |                             |           |                 |              |                  |      |      |        |                     | _        |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        | _     |            |          |                                        |     |           |        |      |            |   |          |      |        | _   |             | 24            | ΤÇ                 |
| T D1A       32       0       32       1.214       1.214       10       0.0       100       B.74       10.6       0.015       RCP       21       0.0045       618.44       618.30       4.4       4.4       0.3       0.3       0.5       0.2       618.44       618.92       1.214       10.121       0.48         0       0       0       1.214       -       0.1       100       8.72       10.6       0.015       RCP       21       0.0045       618.30       4.4       4.4       0.3       0.3       0.5       0.2       618.44       618.92       1.214       10.121       0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 616,64<br>615,11      |                  |                |                                               |             |            |            |                             |           |                 |              |                  |      |      |        |                     |          |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        | -     |            | _        | ·~···································· |     |           | 1,455  | -10  |            | _ |          |      | ****** |     | <u>U</u> 23 | $\rightarrow$ |                    |
| 0 0 0 1.214 0.1 10.1 100 8.72 10.6 0.015 RCP 21 0.0045 616.30 618.30 4.4 3.4 0.3 0.2 0.5 0.1 618.30 618.92 1.214 10.121 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U13.11                | <u>i de la c</u> | -3,343<br>     |                                               | 19.501      | 0 I        | 1.228      | 072.33                      | ?         | 010.20          | <i>.1</i> į  | i.ა <u>[</u> 0.  | 1.   | 0.3  |        | 0,3                 | I        | 5.4               | Į   | 4,4         | .2V (      | 1 518,2  | 16.ZU         | 101  | 0000   | 10   | <u>2</u> 1 | r      | -KCP   | 41    | 1 0.021 | 0.0      | 10       | 0.02      |   | 100    | 0          | 10.6   |       | 0,4        | 1        | •                                      | 40[ | 1.22      |        | Ŀ.   | ų          |   | U        |      | V      |     |             |               |                    |
| 0 0 0 1.214 0.1 10.1 100 8.72 10.6 0.015 RCP 21 0.0045 618.30 618.30 4.4 3.4 0.3 0.2 0.5 0.1 618.30 618.92 1.214 10.121 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 615,87                |                  | 0.48           |                                               | 10.121      | 4          | 1.214      | 618.92                      |           | 618,44          | 2            | ), <b>5</b>   0. | Q.   | 0.3  |        | 0.3                 |          | 4.4               | 1   | 4,4         | .30 İ      | 618.3    | 18,44         | 61   | 0045   | Ű    | 21         | PI     | RCP    | 5     | 0.015   | 0.6      | 10       | 8.74      |   | 100    | 0          | 10,0   | 1     | 0.0        |          | 10                                     | 14  | 1.21      | .214   | 11   | 32         |   | Û        |      | 32     |     | D1A         | DIAI          | ТО                 |
| TDIE DIE 32 0 32 1.214 1.214 10 0.0 10.0 10.0 8.74 10.6 0.013 RCP 21 0.0045 617.85 617.71 4.4 4.4 0.3 0.3 0.5 0.2 617.85 618.91 1.214 10.121 1.06 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 615.39                |                  | 0.62           | 1                                             | 10,121      |            |            |                             |           |                 |              |                  |      |      |        |                     |          |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        | Ť     |            | 1        | ~                                      |     |           |        | 1    | 0          |   | 0        | 1    | 0      | Т   |             | 1             |                    |
| UIE 078 32 4 0 32 32 32 32 32 32 32 32 32 32 32 32 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | <b>E</b>         |                | Ļ                                             |             |            |            |                             |           |                 |              | _                |      |      |        |                     |          |                   |     |             |            |          |               |      |        |      |            | , e    |        |       |         |          |          |           | , |        |            |        |       |            | ,        |                                        |     |           |        | ,    |            | ļ |          | - 1  |        | -   |             |               |                    |
| 0 0 0 1.214 - 0.1 10.1 100 8.72 10.6 0.013 RCP 21 0.0045 617.71 617.71 4.4 6.7 0.3 0.7 0.5 0.4 617.71 618.91 1.214 10.121 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 615,76<br>815.34      |                  |                |                                               |             |            |            |                             |           |                 |              |                  |      |      |        |                     | _        |                   |     |             |            |          |               |      |        |      |            |        |        |       |         |          |          |           |   |        |            |        |       |            | <u> </u> | 10                                     |     |           | .214   | 11   |            | _ | 0        |      |        | 1   | 018         |               | τņ                 |

### MIDWAY ROAL JUNSTRUCTION STORM SEWER CALCULATIONS

#### EXISTING STORM SEWER SYSTEM

|                          |                                                                                                                |          |                |          |          |                  |                |          |              |               |                        | 8            | TORM BYSTER        | A CALCULAT | TONS - MAIN LIN    | i¢.                  |                       |                  |                   |                   |                     |           |               |             |                      |                    |                  |                      |                   |              |
|--------------------------|----------------------------------------------------------------------------------------------------------------|----------|----------------|----------|----------|------------------|----------------|----------|--------------|---------------|------------------------|--------------|--------------------|------------|--------------------|----------------------|-----------------------|------------------|-------------------|-------------------|---------------------|-----------|---------------|-------------|----------------------|--------------------|------------------|----------------------|-------------------|--------------|
|                          |                                                                                                                |          |                | <b></b>  | T.       |                  |                | Ţ        |              | T T           |                        |              |                    | 1          | Γ                  | <u> </u>             |                       | AULIC            |                   |                   |                     |           |               |             |                      |                    |                  | F INVERT             |                   | 1            |
| WANHOLE OR INL           | ET                                                                                                             |          |                | TOTAL    | TIME     | OF CONCE         | ENTRATION      | - 5      | *            |               |                        |              |                    |            |                    |                      | ORADIE                | NT ELEV.         | 105               | DOWN-             | AT CHAN             | SE IN SEC | TION          |             | <sup>2</sup> HOL     | H.O.               | AT DESK          | ON POINT             |                   |              |
|                          | DISTAN                                                                                                         |          |                | CCCCA    | 1        |                  | DOWN-          | 32       | 1187         | TOTAL         |                        | MAGER        |                    | SELECTED   | RALROW             | FRICTION             |                       |                  | STREAM            | OTREAM            |                     |           |               |             | BASED ON<br>FRICTION | ELEV, AT<br>DESIGN | يون ا            | DONYH-               | TOP OF            | TOP OF       |
| DESIGN POINT             | BETWE                                                                                                          |          |                | (ENTERN  |          | TIME IN<br>SEWER | STREAM<br>TIME | DEBON    | ortensi      | DESIGN        | BELECTED<br>PIPE BLOPE | OF           | PIPE MATL          | BIZE OF    | CAPACITY OF        | GRADIENT<br>SLOPE SI | UP-                   | DOWN-            | VELOCITY<br>V1    | VELOCITY<br>V2    | ¥1 <sup>3</sup> /2g | and the   | 5             | 'n          | OR PROP.             | POINT              | STREAM<br>PIPE   |                      | CURB<br>ELEVATION | CURB H.G.    |
| UP- DOWN                 |                                                                                                                |          | <u> (ACEI)</u> | INGE I J |          | GENEN            |                |          | <u> </u>     | I DESCRIMENDE | PIPE BLOPE             | BAPPELS      | MPE MATL           | PIPE       | PIPE               | SLOPE SI             | SINGAM                | SIPEAM           | <u>v1</u>         | ¥                 | ¥1720               | VZINDO    | KQ            | nş.         | O<br>FRIC/           | (1/5)              | PIPE             | Pirts                | ELEVAION          | ELEV.        |
| STREAM STREA             |                                                                                                                |          |                |          | (min)    | (min)            | (mir)          | (years)  | (este)       | (cf.s)        | (8/8)                  |              |                    | (n)        | (0 <sup>5</sup> 8) | (%)                  | (ħ)                   | 御                | (()))             | (fpe)             | (h)                 | (4)       |               | (11)        | 2808                 | (fit)              | (75)             | (m)                  | (内)               | (0)          |
|                          |                                                                                                                | 1        |                |          | 1        | ſ                | 1              |          |              | 1             |                        |              | [                  | 1          | Ì                  |                      |                       |                  |                   |                   |                     |           |               |             |                      |                    | 1                |                      |                   | Ţ            |
| LINE                     |                                                                                                                |          | 1              | 1        |          |                  | 1              | <u> </u> |              | 1             |                        |              |                    | L          |                    |                      |                       |                  |                   |                   |                     |           | l             |             |                      |                    | <u> </u>         |                      |                   | <u>j</u>     |
| 158 39.9<br>39.98 0      |                                                                                                                |          |                | 0.703    |          | 0.0              | 10.1           | 100      |              | 8,1           | 0.005                  | 1            | RCP                | 30         | 27.8               | 0.0002               | and the second second |                  | 12                | 4.2               |                     | 0.270     |               |             |                      |                    |                  |                      | 617,60            | 1.04         |
| 0 0                      |                                                                                                                |          | 0.000          | 2.469    |          | 1.8              | 11.7           | 100      | 8.29<br>8.28 | 20,5          | 0.005                  | 1            | RCP                | 30         | 29.0               | 0.0025               |                       |                  | 4,2               | 4.2               | 0.270               | 0.268     | 0.75          | 0.07        |                      |                    | 610.70<br>810.50 |                      |                   | ł            |
|                          |                                                                                                                | -        |                |          | 1.0      |                  | 1              | 1        | N. 5. W      |               | 0,100                  |              | ,                  | 1 00       | <b>x.</b> a, o     | 10,00 £4             | Q 1 47, 142           | 010.12           |                   | ¥.¥               | 0.4.00              | 0,000     |               | <u>~~~~</u> | 1100                 |                    | 1                | 010.00               |                   |              |
|                          |                                                                                                                |          |                |          | <u> </u> | İ                | T              | 1        |              |               |                        |              |                    | 1          | 1                  |                      |                       | 1                |                   |                   |                     |           |               | 1           |                      |                    |                  |                      |                   |              |
| LINE                     | and the second second                                                                                          |          |                |          | [        | <u> </u>         |                | 1        |              |               |                        |              |                    | 1          |                    |                      |                       |                  | l                 |                   |                     |           |               | 1           |                      |                    | 1                | I                    | -                 |              |
| 322 303<br>303 200       |                                                                                                                |          |                | 0.324    |          |                  | 10.1           | 100      |              |               | 0.021                  | 1            | RCP                | 21         | 23.0               | 0.0003               |                       |                  | 1.2               |                   | 0.021               |           |               |             |                      |                    |                  |                      | 019.77            | 1.92         |
| 200 108                  |                                                                                                                |          |                | 1.352    |          | 0.3              | 10.4           | 100      | 8.67         | 11.7          | 0.021<br>0.008         | 1            | RCP                | 24         | 33.0<br>19.6       | 0.0027               |                       |                  | <u>3.7</u><br>3.7 | 3.7<br>4.7        | 0.210               | 0.210     | 1 <u>0.75</u> | 0.05        |                      |                    |                  | 612.48               | 821.84            | 4.19         |
| 108 0                    |                                                                                                                |          |                | 1.766    |          |                  | 11,3           | 100      | 8.44         | 14.9          | 0.008                  |              | RCP                | 24         | 20.2               | 0.0043               |                       |                  | 4.7               | 4.7               |                     | 0.340     | 0,75          | 0.08        |                      |                    |                  | 610.93               | 616.75            | -0.33        |
| D D                      | 0.00                                                                                                           |          | 0.000          | 1,768    | 0.0      | 0.4              | 11.6           | 100      | 8.32         | 14.7          | 0.008                  | 1            | RCP                | 24         | 20.2               | 0.0042               |                       |                  | 4.7               | 0,0               | 0.340               | 0.000     |               | 0.00        | FRIC                 | 615.54             | 610.93           | 610.93               |                   |              |
|                          |                                                                                                                | _        |                |          |          |                  |                |          |              | ]             |                        |              | ]                  |            | <u> </u>           |                      |                       |                  |                   |                   |                     |           |               | 0,00        |                      |                    |                  |                      |                   |              |
| LINE                     | = C                                                                                                            | 1        |                |          |          |                  | 1              |          |              | I             |                        | -            | I                  |            |                    |                      |                       |                  |                   |                   |                     |           | 1             |             |                      |                    |                  |                      |                   |              |
| 2781.6 2752              | The second second second second second second second second second second second second second second second s | LAT C    | 2 0.733        | 0.733    | 110.4    | 0.00             | 10.4           | 100      | 6.67         | 6.4           | 0.0080                 |              | RCP                | 24         | 20.2               | 0.0008               | 641 06                | 641.04           | 2.0               | 4.0               | 0.063               | 0.249     | 0.75          | 0.20        | 6810                 | 511 96             | 1 640 85         | 1640.62              | 645.37            | 3.41         |
| 2752.8 2600              |                                                                                                                | 4 LAT C  |                | 1.460    |          |                  | 10.6           | 100      | 8.62         | 12.6          | 0.0080                 |              | RCP                | 24         | 20.2               |                      |                       | 640.45           |                   | 3.0               | 0.249               |           |               |             | PROP                 |                    |                  |                      |                   | 3.55         |
| 2600.0 2361              | 2 238                                                                                                          | 0 G88I   | 0.000          | 1,480    | •        | 0,84             | 11.2           | 100      | 8.44         | 12.3          | 0.0132                 | 1            | RCP                | 24         | 28.0               | 0.0030               | 840.40                | 636,37           | 3.9               | 3,4               | 0.239               | 0.178     | 1             | 0.00        | PROP                 | 540.40             | 839.40           | 836,24               | +                 | · ·          |
|                          |                                                                                                                | I LAT C  |                | 2,037    |          |                  | 12.2           | 100      | 0.16         | 16.8          | 0.0156                 | 1            | RCP                | 30         | 51.2               |                      |                       | 636,22           |                   | 4.7               | 0.17B               |           |               |             | PROP                 |                    |                  |                      |                   | 6.18         |
| 2298.2 2180 2180.7 2023  |                                                                                                                |          |                | 2.847    |          |                  | 12.6           | 100      | 8,10         | 23.1          | 0.0158                 | 1            | RCP                | 30         | 51.2<br>51.2       | 0.0032               |                       | 634.41           |                   | 5.6<br>4.7        | 0,343               |           |               | -0.03       | PROP                 |                    |                  |                      | 640.87<br>640.17  | 4.85         |
| 2023.7 1990              |                                                                                                                | LATC     |                | 4.068    |          |                  | 13.4           | 100      | 8.02         | 33.0          | 0.0100                 | <u>  ;</u> − | RCP                | 38         | 66.7               |                      |                       | 631.51           |                   | 5.3               |                     | 0.440     |               |             |                      |                    |                  | 629.65               |                   | 4.30         |
| 1990.7 1924              | 5 65.2                                                                                                         | LATC     | 5 0,558        | 4.544    |          |                  | 13.6           | 1 100    | 8,10         | 37.8          | D.0100                 | 1            | RCP                | 38         | 68,7               |                      |                       | 630.84           |                   | 5,7               | 0,440               |           |               |             |                      |                    |                  | 628.99               |                   | 5.41         |
| 1924,5 1860              |                                                                                                                | LAT C    |                | 4.959    |          |                  | 13.8           | 100      | 8.14         | 40,4          | 0.0100                 | 1            | RCP                | 38         | 68.7               |                      |                       | 529,57           |                   | 4.8               | 0.506               |           |               | -0.03       |                      |                    |                  |                      |                   | 5.93         |
| 1836.7 1836              |                                                                                                                | 0 LAT C  |                | 5.600    |          |                  | 13.9           |          | 8.18<br>7.50 | 45.6<br>48.0  | 0.0100                 | <u>[1</u>    | RCP<br>RCP         | 42         | 100.8              | 0,0021               |                       | 627.48           |                   | 5.0               |                     | 0,388     |               |             |                      |                    |                  | 625.81<br>623.98     |                   | 5.66<br>5.39 |
| 1473.7 1460              |                                                                                                                |          |                | 6.943    |          |                  | 19.7           | 100      |              | 52.1          | 0.0125                 |              | RCP                | 42         | 160,6              |                      |                       | 625.19           |                   | 4.1<br>4.6        |                     | 0.323     |               |             | FRIC                 |                    |                  | 623.31               |                   | 4.75         |
| 1460.2 1380              |                                                                                                                |          |                | 7.635    |          |                  | 15.3           | 100      | 7,50         | 57.3          | 0,0125                 | t i          | RCP                | 45         | 160.6              |                      |                       | 624.25           | 4,6               | 5.2               | 0.323               | 0,415     |               | 0.17        | PROP                 |                    | 823.31           |                      | 631.13            | 6,06         |
| 1380.8 1263              |                                                                                                                |          |                | 8.689    |          |                  | 15.6           | 100      | 7,48         | 65.0          | 0.0125                 | 1            | RCP                | 48         | 160.6              |                      |                       | 522.77           | 5.2               | 5.5               | 0.415               | 0,471     |               |             | PROP                 |                    |                  | 620,86               |                   | 7.20         |
| 1263.7 1138              |                                                                                                                | 1 LAT C  |                | 9.28     |          |                  | 16.0           | 100      | 7,48         | 89.2          | 0.0125                 |              | RCP                | 48         | 160.6              |                      |                       | 621,46           |                   | 5.0               | 0.471               |           |               | 0.19        | PROP                 |                    |                  | 619.28               | 828.57<br>828.32  | 5.95         |
| 888.2 849                |                                                                                                                |          |                | 10.07    |          | 0.39             | 15.4           | 100      |              | 74,8          | 0.0125                 |              | RCP                | 48         | 150.6              |                      |                       | 619,83           |                   | 6.4<br>6.9        | 0.547               |           |               | 0.22        |                      |                    |                  | 617,39               |                   | 7.01         |
| 649.7 630.               |                                                                                                                |          |                | 11.85    |          | 0.36             | 17.2           | 100      | 7.28         | 66.3          | 0.0125                 |              | RCP                | 48         | 160.6              | 0.0038               |                       |                  | 8.0               | 4.5               | 0.732               |           |               | -0.24       |                      |                    |                  | 815.43               |                   | 5,13         |
| 830.0 695.               |                                                                                                                |          |                | 11.85    |          | 0.05             | 17.2           | 100      | 7.26         | 86,1          | 0.0050                 | 2            | RCP                | 42         | 142,3              | 0.0018               |                       |                  | 4.5               | 4,6               |                     | 0,333     |               |             | FRIC                 |                    |                  | 614.83               |                   | 1            |
| 595.0 079.<br>579.1 615. |                                                                                                                |          |                |          | 3 10,6   |                  | 17,7           | 100      |              | 89.1          | 0.0050                 | 2            | RCP                | 42         | 142.3              | 0.0020               |                       |                  | 4,6               | 5.0               | 0.333               |           |               | 0.13        |                      |                    |                  | 614.55               |                   | 2.38         |
| 815.5 277.               |                                                                                                                |          |                | 13.33    |          | 0.06             | 17.8           | 100      | 7.18         | 95.5<br>103.7 | 0.0050                 | <u>  2</u>   | RCP<br>RCP         | 42         | 142.3              | 0.0023               |                       | 618.36<br>617.30 | 5.0               | <u>6.4</u><br>5.4 | 0.383               | 0.451     |               | 0.16        |                      |                    |                  | 614.23               |                   | 3,45         |
| 277.6 288,               |                                                                                                                |          |                | 15.03    |          |                  | 19.0           | 100      |              | 104.5         | 0.0050                 |              | RCP                | 42         | 142.3              |                      |                       | 817.15           | 5,4               | 5.5               | 0,458               |           |               | 0.13        |                      |                    |                  | 512.49               |                   | 1.03         |
| 266.6 139.               |                                                                                                                | 8 LAT Ć  | 8 0,189        | 15.22    | 11.      | 0.03             | 19,1           | 100      | 6.95         | 105.8         | 0.0050                 | 2            | RCP                | 42         | 142.3              | 0.0028               | 817.02                | 815.67           | 5.5               | 4.2               | 0,470               | 0.271     | 0.75          | -0.08       | FRK                  | 617,02             | 612.45           | 611.85               |                   | 1.28         |
| 136.0 0.0                |                                                                                                                |          |                | 15.22    |          | 0,39             | 19,4           | 100      |              | 104.9         | 0.0000                 | 2            | CMP,PLN            |            | 147.8              |                      |                       | 610.12           | 4.2               | 4.1               | 0.271               |           |               | 0.00        |                      |                    |                  | 610.60               | *                 | · · · · ·    |
| 0.0 0.0                  | 0.00                                                                                                           | <u> </u> | 0.000          | 15.22    | ) #N//   | 0,56             | 20.0           | 100      | 6.80         | 103.5         | 0.0090                 | 2            | CMP.PLN            | 48         | 147.6              | 0.0044               | 1 616.12              | 610,12           | 4.1               | 0.0               | 0.283               | 0,000     |               | 0.00        | FRIC                 | 618.12             | 1 610.80         | 610.60               | <u>~</u>          | -            |
| 1                        | L                                                                                                              |          |                | +        | -+       |                  |                |          | 1            | +             |                        | <u> </u>     | +                  | -          |                    | +                    |                       | +                | +                 | ····              |                     | ł         |               | +           | +                    |                    | +                | +                    | [                 | +            |
| LINE                     | E D                                                                                                            |          |                |          |          | 1                |                | 1        | 1            |               | ł                      |              |                    |            | 1                  |                      |                       | 1                |                   |                   | 1                   | I         | 1             |             |                      | I                  |                  |                      |                   |              |
|                          |                                                                                                                | LAT D    | A 1.214        | 1.214    | 10.1     | 0.0              | 10.1           | 100      | 8.72         | 10.8          | 0.005                  | 1            | RCP                | 24         | 16,0               | 0.0022               | 618.30                | 619.28           | 3.4               | 8.7               | 0,176               | 0.705     | 0.75          | 0.57        | FRIC                 | 818.30             | 815.27           | 615.22               | 818,92            | 0,62         |
| 292 205                  |                                                                                                                |          |                | 2.420    |          |                  | 10.2           | 100      |              | 21,2          | 0.005                  | 1            | RCP                | 24         | 16.0               |                      |                       | 618.95           |                   | 6.7               | 0.705               |           |               |             |                      |                    |                  | 614.78               | 618.91            | 1,20         |
| 205 166                  |                                                                                                                |          |                | 2,42     |          | 0.2              | 10.4           | 100      |              | 21.0          | 0.023                  | 1            | RCP                | 24         | 34.2               |                      |                       | 616,44           |                   | 2.4               |                     | 0.090     |               | 0.00        | FRIC                 |                    |                  | 1 613.80             | <u> </u>          | · · ·        |
|                          |                                                                                                                |          | 0.000          | 2.428    |          | 0.1              | 10.5           | 100      | 8.64         | 21.0<br>20.2  | 0.005                  | +            | CMP,PLN<br>CMP,PLN |            | 33,8<br>33,8       |                      |                       | 616.12           |                   | 2.3               | 0.090               |           |               | 0.00        | FRIC                 |                    |                  | 5 611.73<br>1 611.73 | <u> </u>          | <u> </u>     |
| 0 0                      |                                                                                                                |          |                |          |          |                  |                |          |              |               |                        |              |                    |            |                    |                      |                       |                  |                   |                   |                     |           |               |             |                      |                    |                  |                      |                   |              |

1 In two locations the Town of Addison Drainage Manual shows subtracting the two velocity heads and multiplying the difference by the loss coefficient. However on Figure 5-4, the standard way of multiplying the lass coefficient and the upstream velocity head and then subtracting the product from the downstream velocity head is shown. Because the latter is a more conservative approach, it was used in these calculations.

2 This column has been included to help identify pipes flowing in partial flow. If the pipe is flowing under pertial flow, the spreadsheet looks up a ratio of design flow to determine the ratio of design depth to hull depth. This depth ratio is then used to determine the depth of the design flow in the pipe. If this depth is test than the computed HGL using the friction slope, then the depth based on the proportional flows is used to set the HGL at that point. The information used to determine the proportional flow can be found in numerous sources, this spreadsheet consulted Concests Pipe Design Manual, Figure 20 and Open Channel Hydraulics by Chow, Figure 6-5.

~

# APPENDIX F

PROPOSED STORM SEWER ANALYSIS

### MIDWAY ROAD RECONSTRUCTION COMMON VARIABLES USED IN ANALYSIS

|            |                     | Mannings "n"                                              |
|------------|---------------------|-----------------------------------------------------------|
| Pipe Mat'l | Recommended n-value | Source                                                    |
| RCP        | 0.013               | Per the Town of Addison Drainage Manual                   |
| CMP,PLN    | 0.024               | (Plain or Coated) Per the Town of Addison Drainage Manual |
| CMP,PVD    | 0,020               | (Paved Invert) Per the Town of Addison Drainage Manual    |

|        |        |             | Outfal   | I Information                                                    |
|--------|--------|-------------|----------|------------------------------------------------------------------|
|        | Storm  | HGL         | Outfall  |                                                                  |
|        | Sewer  | (tailwater) | Location | Comments                                                         |
|        |        |             |          | HGL shown based on "tailwater" elevation shown on as-built       |
| LINE A | 610.50 | 616.12      | 9'x5'    | plans, associated storm event not listed.                        |
| LINE B | 610.93 | 616.86      | LINE A   |                                                                  |
|        |        |             |          | HGL shown based on "tailwater" elevation shown on as-built       |
| LINE C | 610.60 | 616.12      | 9'x5'    | plans, associated storm event not listed.                        |
|        |        |             |          | HGL shown based on "tailwater" elevation shown on as-built       |
| LINE D | 611.73 | 616.12      | 9'x5'    | plans, associated storm event not listed.                        |
|        | ·····  |             |          | Plans for this system could not be found, only one inlet located |
| LINE E |        |             | Unknown  | within the limits of pavement reconstruction                     |

### MIDWAY ROAD RECONSTRUCTION DRAINAGE AREA CALCULATIONS

|          |       |                   | DRAINAGE          | AREA CALCU       | JLATIONS                              |                    |         |        |
|----------|-------|-------------------|-------------------|------------------|---------------------------------------|--------------------|---------|--------|
| DRAINAGE |       |                   |                   |                  |                                       |                    |         |        |
| AREA NO. | IN    | LET               | DESIGN            |                  |                                       | NOFF (Q=CIA)       | 1       |        |
|          | NO.   | PAVING<br>STATION | STORM<br>FREQUNCY | TIME OF<br>CONC. | RUNOFF<br>COEFF. "C"                  | MULTIPLIER<br>"Ca" | AREA    | C*Ca*A |
|          |       | STATION           | (years)           | (min)            |                                       | 0                  | (acres) |        |
|          |       |                   | 100               | 10               | 0.8                                   | 1                  | 2.09    | 1.672  |
| Combined | B1    |                   | 100               | 10               | 0.0                                   | •                  |         | 1.672  |
| 2        |       |                   | 100               | 10               | 0.9                                   | 1                  | 0.36    | 0.324  |
| Combined | B2 .  |                   | 100               | 10               | 010                                   | •                  | 0100    | 0.324  |
| 3        |       |                   | 100               | 10               | 0.8                                   | 1                  | 1.56    | 1.248  |
| Combined | A1    |                   | 100               | 10               |                                       | •                  |         | 1.248  |
| 4        |       |                   | 100               | 10               | 0.9                                   | 1                  | 0.46    | 0.414  |
| Combined | B3    |                   |                   | 10               | , , , , , , , , , , , , , , , , , , , | • .                |         | 0.414  |
| 5A       |       |                   | 100               | 10               | 0.8                                   | 1                  | 0.51    | 0.408  |
| Combined | D1A   |                   |                   | 10               |                                       |                    | 100 m   | 0.408  |
| 5B       | •     |                   | 100               | 10               | 0.8                                   | 1                  | 0.47    | 0.376  |
| Combined | D1B   |                   |                   | 10               |                                       | -                  |         | 0.376  |
| 5C       |       |                   | 100               | 10               | 0.8                                   | . 1                | 0.7     | 0.560  |
| Combined | D2    |                   |                   | 10               |                                       |                    |         | 0.560  |
| 6A       |       |                   | 100               | 10               | 0.9                                   | 1                  | 0.5     | 0.450  |
| Combined | C1A   |                   |                   | 10               |                                       |                    |         | 0.450  |
| 6B       |       |                   | 100               | 10               | 0.9                                   | 1                  | 0.21    | 0.189  |
| Combined | C1B   |                   |                   | 10               |                                       | -                  |         | 0.189  |
| 7        | + · - |                   | 100               | 10               | 0.8                                   | . 1                | 1.27    | 1.016  |
| Combined | C2    |                   |                   | 10               |                                       |                    |         | 1.016  |
| 8        |       |                   | 100               | 10               | 0.9                                   | . 1                | 0:67    | 0.603  |
| Combined | C3    |                   |                   | 10               |                                       |                    |         | 0.603  |
| 9        |       |                   | 100               | 10               | 0.8                                   | 1                  | 1.39    | 1.112  |
| Combined | C4    |                   |                   | 10               |                                       |                    |         | 1.112  |
| 10       | -     |                   | 100               | 10               | 0.8                                   | . 1                | 0.52    | 0.416  |
| Combined | C5    |                   |                   | 10               |                                       |                    |         | 0.416  |
| 10a      |       |                   | 100               | 10               | 0.8                                   | 1                  | 4.25    | 3.400  |
| Combined | C5A   |                   |                   | 10               |                                       |                    |         | 3.400  |
| 11 -     |       |                   | 100               | 10               | 0.8                                   | 1                  | 1       | 0.800  |
| Combined | C6    |                   |                   | 10               |                                       |                    |         | 0.800  |
| 12       |       |                   | 100               | 10               | 0.8                                   | 1                  | 0.74    | 0.592  |
| Combined | C7    |                   |                   | 10               |                                       |                    |         | 0.592  |
| 13       |       |                   | 100               | 10               | 0.8                                   | 1                  | 0.85    | 0.680  |
| Combined | C10   |                   |                   | 10               |                                       |                    |         | 0.680  |
| 14       |       |                   | 100               | 10               | 0.9                                   | 1                  | 0.61    | 0.549  |
| Combined | C11   |                   |                   | 10               |                                       |                    |         | 0.549  |
| 15       |       |                   | 100               | 10               | 0.8                                   | 1                  | 1.47    | 1.176  |
| Combined | C12   |                   |                   | 10               |                                       |                    |         | 1.176  |
| 16       |       |                   | 100               | 10               | 0.8                                   | 1                  | 0.64    | 0.512  |
| Combined | C13   |                   |                   | 10               |                                       |                    |         | 0.512  |
| 29       |       |                   | 100               | 10               | 0.9                                   | 1                  | 0.35    | 0.315  |
| Combined | C14   |                   |                   | 10               |                                       |                    |         | 0.315  |

### MIDWAY ROAD RECONSTRUCTION DRAINAGE AREA CALCULATIONS

|          |       |          | DRAINAGE          | AREA CALCI       | JLATIONS             |                                       |          |        |
|----------|-------|----------|-------------------|------------------|----------------------|---------------------------------------|----------|--------|
| DRAINAGE |       |          |                   |                  | i                    |                                       |          |        |
| AREA NO. | 1N    |          | DESIGN            | THEAD            |                      | IOFF (Q=CIA)                          |          |        |
|          | NO.   | PAVING   | STORM<br>FREQUNCY | TIME OF<br>CONC. | RUNOFF<br>COEFF. "C" | MULTIPLIER<br>"Ca"                    | AREA     | C*Ca*A |
|          | 110.  |          | (years)           | (min)            |                      |                                       | (acres)  |        |
| 17       |       |          | 100               | 10               | 0.8                  | 1                                     | 0.95     | 0.760  |
| Combined | C15   |          |                   | 10               | 0.0                  | <u>-</u>                              |          | 0.760  |
| 18       | 010   |          | 100               | 10               | 0.8                  | 1                                     | 0.42     | 0.336  |
| Combined | C16   |          |                   | 10               | 0.0                  | •                                     |          | 0.336  |
| 19       | 010   |          | 100               | 10               | 0.8                  | 1                                     | 1.05     | 0.840  |
| Combined | C17   |          |                   | 10               | <u> </u>             | -                                     |          | 0.840  |
| 20       | •     |          | 100               | 10               | 0.9                  | 1                                     | 0.69     | 0.621  |
| Combined | C18   |          |                   | 10               |                      | · <u>-</u>                            |          | 0.621  |
| 21       | - • • |          | 100               | 10               | 0.8                  | . 1                                   | 1.2      | 0.960  |
| Combined | C19   |          |                   | 10               |                      | • •                                   |          | 0.960  |
| 30       |       |          | 100               | 10               | 0.9                  | 1                                     | 0        | 0.000  |
| Combined | C20   |          |                   | 10               |                      |                                       |          | 0.000  |
| 22       |       |          | 100               | 10               | 0.8                  | 1                                     | 1.04     | 0.832  |
| Combined | C22   |          |                   | 10               |                      |                                       |          | 0.832  |
| 23       |       |          | 100               | 10               | 0.8                  | 1                                     | 0.79     | 0.632  |
| Combined | C21   |          |                   | 10               |                      |                                       |          | 0.632  |
| 25       |       |          | 100               | 10               | 0.8                  | 1                                     | 0.57     | 0.456  |
| Combined | C23   |          |                   | 10               |                      |                                       |          | 0.456  |
| 26       |       |          | 100               | 10               | 0.8                  | 1                                     | 0.61     | 0.488  |
| Combined | C24   |          |                   | 10               |                      |                                       |          | 0.488  |
| 26A      |       |          | 100               | 10               | 0.8                  | 1                                     | 1.4      | 1.120  |
| Combined | C24A  |          |                   | 10               |                      |                                       |          | 1.120  |
| 24       |       |          | 100               | 10               | 0.8                  | 1                                     | 4.29     | 3.432  |
| Combined | E1    |          |                   | 10               |                      |                                       |          | 3.432  |
| 27       |       |          | 100               | 10               | 0.8                  | 1                                     | 0.42     | 0.336  |
| Combined | C8    |          |                   | 10               |                      |                                       |          | 0.336  |
| 28       |       |          | 100               | 10               | 0.8                  | . 1                                   | 1.52     | 1.216  |
| Combined | C9    |          |                   | 10               |                      |                                       |          | 1.216  |
| 31       |       |          | 100               | 10               | 0.8                  | 1                                     | 0.85     | 0.680  |
| Combined | C26   |          |                   | 10               |                      |                                       |          | 0.680  |
| 32       |       |          | 100               | 10               | 0.8                  | 1                                     | 0.46     | 0.368  |
| Combined | C25   |          |                   | 10               |                      |                                       |          | 0.368  |
| 33       |       |          | 100               | 10               | 0.8                  | 1                                     | 0.82     | 0.656  |
| Combined | C27   | <u> </u> | . <u></u>         | 10               |                      | · · · · · · · · · · · · · · · · · · · | <u>.</u> | 0.656  |

#### **MIDWAY ROAD RECONSTRUCTION** INLET CALCULATIONS

### PROPOSED STORM SEWER SYSTEM

| 1N         | LET             | 1               | DESIGN   |           | AREA RUNO    |         |             | CARRY-   |             | 1     | CALCULATI |           |        | ON-    | CAPACITY | LENGTH      | INLET     | 1            | CADON      | OVER TO        | FLOW     | C'Ca'A |
|------------|-----------------|-----------------|----------|-----------|--------------|---------|-------------|----------|-------------|-------|-----------|-----------|--------|--------|----------|-------------|-----------|--------------|------------|----------------|----------|--------|
| 111        |                 | DRAINAGE        | STORM    | TIME OF   | INCX NON U   |         |             | OVER     | TOTAL       | CROSS | GUTTER    | ALLOWABLE | GUTTER | GRADE/ |          | OF INLET    | LENGTH    | TYPE OF      |            | <u>VYER IU</u> | INTO     | INTO   |
| NŌ.        | STATION         | AREA NO.        | FREQUNCY | CONC.     | INTENSITY    | C"Ca"A  | <b>"O</b> " | FROM     | FLOW        | SLOPE | DEPTH     | DEPTH     | SLOPE  | LOWPT  | OF INLET | REO'D       | AREAd     | INLET        | NŐ.        | FLOW OF        | INLET    | INLET  |
|            |                 | 7 II CHARTER    | (years)  | (min)     | (in/hr)      | (acres) | (c.f.s.)    | (c.f.s.) | (C.I.S.)    | %     | A         | ft        | R/A    |        | (cfs/ft) | (ñ)         | (ft)/(ft) |              | <u> </u>   | (cfs)          | (cfs)    |        |
| 61         | 4+25            | 4               | 100      | 10        | 8.74         | 1.67    | 14.8        | 0.0      | 14.6        | 2,120 | 0.35      | 0.42      | 0.021  | GRADE  | 0.57     | 25.5        | 20        | CURB         | At         | 3.3            | 11.3     | 1.30   |
| 62         | 4+45            | 2               | 100      | 10        | 8,74         | 0,32    | 2.8         | 0.0      | 2.8         | 2,160 | 0.20      | 0.42      | 0.017  | GRADE  | 0.43     | 6,8         | 10        | CURB         | 83         | 0.0            | 2.8      | 0 32   |
| 83         | 0+60            | 4               | 100      | 10        | 8,74         | 0.41    | 3.6         | 0.0      | 3.6         | 2,000 | 0.21      | 0.42      | 0.017  | LOWPT  | 0.29     | 12.6        | 10        | CURB         | LOWPT      | 0.7            | 2.9      | 0.33   |
| AI         | 6+65            | 3               | 100      | 10        | 8.74         | 1.25    | 10.8        | 3.3      | 14,2        | 1,940 | 0.35      | 0.42      | 0,017  | LOWPT  | 0.61     | 23.2        | 20        | CURE         | LOWPT      | 1.9            | 12.5     | 1,40   |
| D1A        | 10+65           | 6A              | 100      | 10        | 6,74         | 0.41    | 3.6         | 0.0      | 3.6         | 1,820 | 0.24      | 0.40      | 0.006  | LOWPT  | 0.36     | 10,0        | 10        | CURB         | D18        | 0.0            | 3.6      | 0.41   |
| D1B        | 10+65           | 5B              | 100      | 10        | 8,74         | 0.38    | 3,3         | 0,0      | 3.3         | 1,820 | 0.23      | 0.40      | 0.008  | LOWPT  | 0.34     | 9.6         | 10        | CURB         | LOWPT      | 0.0            | 3.3      | 0.38   |
| D2         |                 | 6C              | 100      | 10        | 6,74         | 0.56    | 4,9         | 0.0      | 4.9         | 1.820 | 0.27      | 0.40      | 0.008  | GRADE  | 0,50     | 9.9         | 10        | CURB         | DIA        | 0.0            | 4.9      | 0,58   |
| Ç1A        | 11+10           | <u>8A</u>       | 100      | 10        | 6,74         | 0.45    | 3,8         | 0.0      | 3.0         | 4,390 | 0.35      | · 0.42    | 600,0  | LOWPT  | 0.63     | 6.3         | 10        | CURB         | C18        | 0.0            | 3.9      | 0,45   |
| C18        | 11+10           | 68              | 100      | 10        | 8.74         | 0.10    | 1.7         | 0,0      | 1.7         | 4,300 | D.25      | 0.42      | 0.008  | LOWPT  | 0.39     | 4,3         | 10        | CURB         | LOWPT      | 0.0            | 1,7      | 0.19   |
| C2         | 15+30           | 7               | 100      | 10        | 6.74         | 1.02    | 8.8         | 0.0      | 8.9         | 2.060 | 0.38      | 0.42      | 0,008  | GRADE  | 0.58     | 15.4        | 20        | CURB         | 01A        | 0.0            | 8,9      | 1.02   |
| <u>C3</u>  | 15+31           | 8               | 100      | 10        | 8.74         | 0,60    | 5.3         | 0,0      | 53          | 4,170 | 0.34      | 0.42      | 0,013  | GRADE  | 0.56     | 8,6         | 10        | CURB         | <u>C1A</u> | 0,0            | 5,3      | 0.60   |
| <u>C4</u>  | 17+05           | 9               | 100      | 10        | 8.74         | 1.11    | 9.7         | 3.8      | 13.5        | 2.080 | 0.32      | 0.42      | 0.026  | GRADE  | D.54     | 24.9        | 20        | CURB         | 05         | 2.6            | 10,9     | 1.25   |
| C6         | 16+40           | 10              | 100      | 10        | 8.74         | 0.42    | 3.6         | 12,7     | 16.4        | 2.080 | 0,41      | 0,42      | 0,010  | GRADE  | 0.63     | 26,1        | 20        | CURB         | C4         | 3.8            | 12.6     | 1.44   |
| CSA        |                 | 10A             | 100      | 10        | 8,74         | 3.40    | 29,7        | 0.0      | 29.7        | 2,060 | <u> </u>  | 0,42      | OFF RD | LOWPT  | 1,08     | 28.0        | 16        | DROP         | C.5        | 12,7           | 17.0     | 1,94   |
| <u>C6</u>  | 18+90           | 11              | 100      | 10        | 8.74         | 0.80    | 7.0         | 2.7      | 9.7         | 2,060 | 0.34      | 0,42      | 0.010  | GRADE  | 0,58     | 17.4        | 14        | CURB         | C6         | 1.9            | 7.8      | 0,69   |
| C7         | 21+05           | 12              | 100      | 10        | 8.74         | 0.59    | 5.2         | 0.0      | 5.2         | 4,170 | 0,34      | 0,42      | 0.012  | GRADE  | 0,56     | 9.3         | 10        | CURB         | C3         | 0.0            | 5.2      | 0,59   |
| C8         | WP <sup>2</sup> | 27              | 100      | 10        | 8.74         | 0,34    | 2.9         | 0.0      | 2.6         | 6.260 | 0.32      | 0.42      | 0.013  | GRADE  | 0,54     | 5.5         | 10        | CURB         | C8         | 0.0            | 2.0      | 0,34   |
| C8         | WP <sup>2</sup> | 28              | 100      | 10        | 8,74         | 1.22    | 10.5        | 0,0      | 10,6        | 4.050 | -0,41     | 0.42      | 0.018  | GRADE  | 0.62     | 17,0        | 14        | CURB         | C8         | 1.9            | 8,7      | 1.00   |
| C10        | 23+15<br>23+10  | 13              | 100      | 10        | 8.74         | 0.68    | 5,9         | 2.4      | 0.4         | 2,080 | 0,32      | 0.42      | 0,010  | GRADE  | 0.64     | 15,6        | 14        | CURB         | C8         | 0.8            | 7.6      | 0.67   |
| C11<br>C12 | 24+90           | 14              | 100      | 10        | <u>8.74</u>  | 0.65    | 4,8<br>10,3 | 0.0      | 4.8<br>10.3 | 4.170 | 0,35      | 0.42      | 800.0  | GRADE  | 0.67     | B.4         | 10        | CURB         | C7         | 0.0            | 4,8      | 0.55   |
| C13        | 27415           | <u>15</u><br>16 | 100      | <u>10</u> | 8,74<br>8,74 | 0.51    | 4.8         | 0.1      | 4.9         | 2,080 | 0.35      | 0.42      | 0,010  | GRADE  | 0.55     | 18,3        | 14        | CURB<br>CURB | C10<br>C12 | 2.4            | 7.9      | 0.90   |
| C14        | 27+5            | 29              | 100      | 70<br>10  | 8.74         | 0.32    | 4,0         | 0.0      | 2.8         |       |           | 0.42      | OFF RD | LOWPT  | 1.08     | 10.1        | 10        | CURB         | C12<br>C13 | 0.1            | 4.9      | 0.55   |
| C15        | 28+45           | 17              | 100      | 10        | 8.74         | 0.32    | 6.6         | 1.3      | 7.9         | 2.080 | 0.31      | 0.42      | 0.010  | GRADE  | 0,63     | 14.9        | 14        | CURB         | C13        | 0.0            | 2,8      | 0.86   |
| C18        | 26+60           | 18              | 100      | 10        | 8,74         | 0.34    | 2.9         | 0.0      | 2.9         | 4,170 | 0.28      | 0.42      | 0.010  | GRADE  | 0.60     | 14,9<br>5,9 | 10        | CURB         | C13        | 0.0            | 2.9      | 0.34   |
| C17        | 30+35           | 19              | 100      | 10        | 8.74         | 0.84    | 7.3         | 1.1      | 8.4         | 2.080 | 0.20      | 0.42      | 0.020  | GRADE  | 0.51     | 18,5        | 10        | CURB         | C15        | 1.3            | <u> </u> | 0.84   |
| CIS        | 31+40           | 20              | 100      | 10        | 8.74         | 0.62    | 5.4         | 0.0      | <u>5.4</u>  | 4.170 | 0.34      | 0.42      | 0.020  | GRADE  | 0.58     | 9.7         | 10        | CURB         | C16        | 0.0            | 5,4      | 0.62   |
| C19        | 32+10           | 21              | 100      | 10        | 8.74         | 0.98    | 8.4         | 0.0      | 8.4         | 2,080 | 0.30      | 0.42      | 0,014  | GRADE  | 0.52     | 18,0        | 14        | CURB         | C17        | 1.1            | 7.3      | 0.64   |
| C20'       | GP <sup>2</sup> | 30              | 100      | 10        | 8.74         | 0.00    | 0.0         | 0.0      | 0.0         | 0.000 | <u> </u>  | 0.00      | OFF RD | LOWPT  | 2.2      | 0.0         | 4         | GRATE        | C19        | 1 0.0          | 0.0      | 0.00   |
| C21        | 35+00           | 23              | 100      | 10        | 8.74         | 0.63    | 6.6         | 0.0      | 5.5         | 4,360 | 0.42      | 0.42      | 0.005  | GRADE  | 0.63     | 8,7         | 10        | CURB         | C18        | 0.0            | 5.5      | 0.63   |
| C22        | 36+20           | 22              | 100      | 10        | 8,74         | 0.83    | 7.3         | 0.0      | 7.3         | 2.080 | 0.35      | 0.42      | 0.005  | GRADE  | 0.57     | 12,8        | 14        | CURB         | Cie        | 0.0            | 7.3      | 0.63   |
| C25        | 1               | 32              | 100      | 10        | 8.74         | 0.37    | 3.2         | 0.3      | 3.6         | 2,080 | 0.27      | 0.42      | 0.005  | GRADE  | 0.49     | 7.3         | 10        | CURB         | C22        | 0.0            | 3.6      | 0.41   |
| C26        | 1               | 31              | 100      | 10        | 8,74         | 0.68    | 5.9         | 0,0      | 5.9         | 4,360 | 0,43      | 0.42      | 0.005  | GRADE  | 0.64     | 9.2         | 10        | CURB         | C21        | 0.0            | 5,9      | 0.65   |
| C27        | 1               | 33              | 100      | 10        | 8,74         | 0.66    | 5,7         | 0,0      | 5.7         | 2,050 | 0,32      | 0,42      | 0.005  | GRADE  | 0.54     | 10.6        | 10        | CURB         | C25        | 0.3            | 5.4      | 0.62   |
| C23        | L8 <sup>2</sup> | 25              | 100      | 10        | B.74         | 0,46    | 4.0         | 0,0      | 4.0         | 3,400 | 0.27      | 0.42      | 0.016  | GRADE  | 0,49     | 8,1         | 10        | CURB         | D2         | 0.0            | 4,0      | 0.46   |
| C24        | LS <sup>2</sup> | 28              | 100      | 10        | 6.74         | 0.49    | 4.3         | 0.0      | 4.3         | 3.700 | 0.29      | 0.42      | 0.014  | GRADE  | 0.52     | 8.3         | 10        | CURB         | D2         | 0.0            | 4.3      | 0.49   |
| C24A       | LB <sup>2</sup> | 26A             | 100      | 10        | 8.74         | 1.12    | 9.8         | 0.0      | 9.8         | 3,700 | 0.40      | 0.42      | 0.014  | GRADE  | 0.62     | 15.9        | 10        | CURB         | D4         | 3.6            | 6.2      | 0,71   |
| E1         | 54+15           | 24              | 100      | 10        | 8.74         | 3,43    | 30.0        | 0.0      | 30.0        | 3.970 | 0.57      | 0.42      | 0.022  | GRADE  | 0.80     | 37,7        | 10        | CURB         | LOWPT      | 22.0           | 8,0      | 0.01   |

1 COULD NOT VERIFY EXISTENCE IN FIELD OR FROM FIELD SURVEY; THEREFORE, ASSUME FOR CONSERVATIVENESS THAT THE FLOW ENTERS THE STREET AND ENTERS THE SYSTEM AT INLET C18. ALSO, SINCE THE PLANS CALL THIS A DOUBLE GRATE INLET, IT IS POSSIBLE THAT IT WILL BE CLOGGED BY DEBRIS DURING THE STORM AND THEREFORE, BE INEFFECTIVE.

2 INLETS OFF OF MIDWAY; WP WILEY POST

LB LINDBERG

GR GRATE INLET

. •

### MIDWAY ROAD RECONSTRUCTION LATERAL CALCULATIONS

|                    |                |                |                 |                |       |                |               |                  |                         |            |               |                           | etory                 | I SYSTEM CA | LCULATI  | ONS - LATERA                     | AL LINES         | ON MAIN UR          | ₩Ē                              |                                   |                     |            |                  |                                |                   |                                 |                                    |                                |                       |                         |
|--------------------|----------------|----------------|-----------------|----------------|-------|----------------|---------------|------------------|-------------------------|------------|---------------|---------------------------|-----------------------|-------------|----------|----------------------------------|------------------|---------------------|---------------------------------|-----------------------------------|---------------------|------------|------------------|--------------------------------|-------------------|---------------------------------|------------------------------------|--------------------------------|-----------------------|-------------------------|
|                    |                | MANHOLE        | OR INLET        | STNICA         |       | ×              | TIME          | OF CONCE         | NTRATION                | 1          |               | NO H                      | PSF                   | E DESCRIPT  | KON      |                                  |                  | RAULIC<br>INT ELEV. | HE                              | AD LOSS AT                        | CHANGE              | IN SECT    | ION              |                                | EUEV. OF          |                                 |                                    |                                |                       | INVERTAT                |
|                    |                | DESIÓ          | POINT           | DISTANCE       | C.C.  | TOTAL C'C      | INLET<br>TIME | time in<br>Sewer | DOWN-<br>STREAM<br>TIME | DESION     | INTENSITY     | TOTAL DESIGN<br>DISCHARGE | SLOPE<br>PER<br>PLANS | MATERIAL    | BIZE     | FRICTION<br>GRADIENT<br>SLOPE ST | UP-<br>STREAM    | DOWN.<br>STREAM     | UP-<br>STREAM<br>VELOCITY<br>VI | DOWN-<br>STREAM<br>VELOCITY<br>Vy | V1 <sup>2</sup> /2g | Vitta      | KĮ N             | KO ELEV.<br>AT CESION<br>POINT | TOP OF<br>CURE AT | TOTAL<br>O"C#AINTO<br>MAIN LINE | TOTAL INCET<br>TIME TO MAIN<br>UNE | TOP OF<br>CURD -<br>H.O. ELEV, | UP.<br>STREAM<br>PIPE | DOWN-<br>STREAM<br>PIPE |
| Lateral,<br>Number | INLET<br>NUMBE | A STREAM       | DOWN-<br>STREAM | (ħ)            |       |                | (min)         | (min)            | (nin)                   | (99873)    | (instar)      | (cfs)                     | (itvit)               |             | (m)      | (%)                              | (ħ)              | (11)                | (fps)                           | (fpm)                             | (11)                | (N)        | 0                |                                | (M)               | (cfs)                           | (min)                              | (6)                            | (ft)                  | (ח)                     |
| LAT A1             | A1             | 21             | 0<br>0          | 21             | 1.403 | 1.403          | 10<br>-       | 0,0<br>0,1       | 10,0<br>10,1            | 100        | 8.74<br>8.74  | 12,3<br>12,3              | 0.103                 | RCP<br>RCP  | 21       |                                  | 617.09<br>615.99 | 616.96<br>616.98    | 5,1<br>5,1                      | 5.1<br>2.5                        | 0.4<br>0.4          |            | 0.5 0.           |                                | 518.00<br>518.00  | 1.403                           | 10.069<br>10.089                   | 0.91<br>1.04                   | 813.78<br>811.62      | 611.62<br>611.62        |
| LAT 81             | 61             | 88<br>0        | 0               | <u>88</u><br>0 | 1,296 | 1,296          |               | 0.0              | 10.0<br>10.3            | 100<br>100 | 8.74<br>8.67  | 11.3<br>11.2              | 0.033                 | RCP<br>RCP  | 21<br>21 | 0.0051                           |                  |                     |                                 | 4 <u>.7</u><br>4,5                | 0.3<br>0.3          |            |                  | 2 618.33<br>2 617.88           |                   | 1.296                           | 10.311<br>10.311                   | 3.67<br>4.12                   | 618.21<br>015.30      | 615.30<br>615.30        |
| LAT B2             | B2             | 10             | 0               | 10             | 0.324 | 0.324          | 10            | Q.Q              | 10,0                    | 100        | 8.74          |                           | 0,065                 | RCP         | 18       | 0.0007                           | 618.19           | 618.18              | 1.0                             | 1.6                               |                     |            |                  | 0 618.19                       |                   |                                 | 10.104                             |                                | 615.60                | 615,05                  |
|                    |                | 0              | Ŭ               | 0              |       | 0.324          | · 1           | 0.1              | 10,1                    | 100        | 8.72          | 2.8                       | 0.065                 | RCP         | 18       | 0.0007                           | 618.18           | 818.18              | 1.8                             | 1,2                               | 0,0                 | 0.0        | 0.5 0.           | 0 618.18                       | 621.50            | 0.324                           | 10.104                             | 3,32                           | 615.95                | 615.95                  |
| LAT 83             | 83             | 10<br>0        | 0               | 1Ú<br>0        | 0.331 | 0.331          |               | 0.0<br>0.1       | 10.0<br>10.1            | 100        | 8.74<br>8.72  | 2.9<br>2.9                | 0.08                  | RCP<br>RCP  | 21<br>21 |                                  |                  | 617.07<br>617.07    | 1.2                             |                                   | 0.0<br>0.0          |            | 0.5 0.           | 0 617.07<br>1 617,07           | 618,00<br>618,00  | 0.331<br>0.331                  | 10,139<br>10,139                   | 0.93<br>0,93                   | 612.97<br>612.17      | 612.17<br>612.17        |
| LATCIA             | <u>C1A</u>     | 62<br>0        | 0               | 62<br>0        | 0.45  | 0,45<br>0,45   | 10            | 0.0<br>0.6       | 10.0<br>10.8            | 100        | 8.74<br>9.60  |                           | 0.023                 | RCP<br>RCP  | 21<br>21 |                                  |                  | 617.39<br>617.39    | 1.6<br>1.6                      | 1.6<br>8.0                        | 0.0<br>0.0          |            |                  | 0 <u>617.43</u><br>3 617.39    | 618,50<br>618,50  | 0.450                           | 10.632<br>10.832                   | 1.07<br>1.11                   | 614,85<br>813,42      | 613.42<br>613.42        |
| LAT C18            | C18            | <u>62</u><br>0 | 0               | 62<br>0        | 0,189 | 0.189          |               | 0,0<br>1,5       | 10.0<br>11.5            | 100        | 8.74          | 1.7                       | 0.023                 | RCP         | 21<br>21 |                                  |                  | 617,20<br>617,20    | 0.7<br>0.7                      | 0,7                               | 0.0                 |            | 0.5 0.           |                                | 618.50<br>618,50  | 0,169                           | 11.505<br>11.505                   | 1.29                           | 614.80<br>613,35      | 613.36<br>613,36        |
| LAT C2             | C2             | 61<br>0        | 0               | 61<br>0        | 1.016 | 1.016          | 10            | 0.0              | 10.0                    | 100        |               | 8.9<br>6.9                |                       | RCP         | 21<br>21 | 0.0031                           | 618.94           | 618.75<br>618.75    | 3,7                             | 3.7                               | 0.2                 | 0.2        | 0.5 0.           | 1 618.94                       | 620,50            | 1,016                           | 10.275                             | 1.66                           | 619.79                | 617,49                  |
| LAT C3             | ස              | 31             | D               | 31             | 0.603 | 0.603          | 10            | 0,0              | 10.0                    | 100        | 8 74          | 5.3                       | 0.034                 | RCP         | 21       | 0.0011                           | 618.92           | 618.80              |                                 | 1,8<br>2.2                        | 0.2                 | 0.1        | 0.5 0.           | 0 618.92                       | 620.00            | 1.016<br>0.603                  | 10,275<br>10,236                   | 1.75                           | 617.49                | 617.49                  |
| LAT C4             | CA             | 64             | 0               | 0<br>64        | 1 245 | 0.603          | · · · · ·     | 0,2<br>0.0       | 10.2                    | 100        | 8.69          |                           | 0.034                 | RCP         | 21<br>21 | 0.0011                           |                  | 619.31              | 2.2<br>4.5                      | 6.0<br>4.5                        | 0.1<br>0.3          |            | 0.5 0.           | 3 618.88<br>2 619.61           | 620,00<br>625.00  | 0.603                           | 10.236<br>10.236                   | 1.12<br>5.39                   | 615.51<br>620.20      | 615.51<br>615.81        |
|                    |                | Q              | B               | 0              | 1     | 1.245          | •             | 0.2              | 10,2                    | 305        | 8.69          | 10.8                      | 0.053                 | RCP         | 21       | 0.0047                           | 619,31           | 819,31              | 4,5                             | 8.9                               | 0.3                 | 1.2        | 0.5 0.           | 6 619,31                       | 625,00            | 1,245                           | 10.238                             | 5.69                           | 616.61                | 618.01                  |
| LAT C5             | <u>C5</u>      | 64<br>0        | Ŭ<br>Q          | 64<br>0        | 1.438 | 1.438          |               | 0,0<br>0,2       | 10.0<br>10.2            | 100        | 8.74          | 12.6                      | 0.085                 | RCP         | 21<br>21 |                                  |                  | 620.73<br>620.73    | 5.2<br>5.2                      | 5.2<br>8.2                        | 0,4<br>0.4          |            |                  | 2 621.13<br>5 620.73           | 627.00<br>627.00  | 1.438                           | 10.204<br>10.204                   | 5.87<br>6.27                   | 622.66<br>618.61      |                         |
| LAT CSA            | <u>C5</u> A    | 200            | 0<br>0          | 200<br>0       | 1.942 | 1.942<br>1.942 |               | 0.0<br>0.5       | 10.0<br>10,5            | 100<br>100 | 8.74<br>8.64  | 17.0<br>16.8              | 0.01                  | RCP<br>RCP  | 21<br>21 |                                  |                  | 621.08<br>621.08    | 7,1<br>7.0                      | 7.1<br>8.5                        | 0.8<br>0.8          |            | 0.5 0.<br>0.5 0. |                                | 627.00<br>527.00  | 1,942<br>1,942                  | 10.472<br>10.472                   | <u>3.63</u><br>5.92            |                       | 619,75<br>619,76        |
| LAT C6             | <u>Ç6</u>      | 64<br>0        | D<br>D          | 64<br>0        | 0,893 | 0,893<br>0,893 |               | 0.0              | 10 <u>.0</u><br>10.3    | 100<br>100 | 8.74<br>8.87  | 7.8                       | 0.062                 | RCP<br>RCP  | 21<br>21 | 0.0024                           |                  | 621.50<br>621.50    |                                 | <u>3.2</u><br>7,4                 | 0.2<br>0.2          |            |                  | 1 621.66<br>4 621.50           | 628.50<br>628.50  | 0.803                           | 10,329<br>10,329                   | 6,84<br>7.00                   |                       | 620.39<br>620.39        |
| LAT C7             | C7             | 34<br>0        | Ŭ<br>O          | 34<br>0        | 0.592 | 0,592          |               | 0,0<br>0.3       | 10.0<br>10.3            | 100        | 0.74          | <u>6.2</u><br>5.1         |                       | RCP         | 21<br>21 | 0.0011                           |                  | 622,86              |                                 | 2,2<br>6,9                        | 0,1                 |            | 0.5 0            |                                | 629.00<br>629.00  | 0.592                           | 10,263                             | <b>5.11</b><br>6.14            | 624.39<br>621,98      | 621.98<br>621.98        |
| LAT CO             | 63             | 34             | 0               | 34<br>0        | 0.336 | 0.336          | 10            | 0,0<br>0.3       | 10,0                    | 100        | 6.74          | 2,9                       | 0.008                 | RCP         | 18       | 0.0008                           | 624.78           | 624.75              | 1.7                             | 1,7                               | Ö,Ũ                 | Ū,Ū        | 0,5 0.           | 0 624.78                       | 631,12            | 0.338                           | 10,341                             | 6.34                           | 629.27                | 626.99                  |
| LAT C9             | Cá             | 114,32         | 81              | 33.32          | 0.999 | 0.999          |               | 0.0              | 10.3                    | 100        |               | 8.7                       | 0.008                 | RCP         | 18       | 0.0008                           |                  | 624.75              |                                 | 4,8                               | 0,0                 |            | 0.5 0.           | 2 624.75                       |                   | 0.336                           | 10.341<br>10.622                   | 6.37<br>6.43                   | 628.99<br>628.15      | .,                      |
|                    | C8             | <u>81</u><br>0 | 0<br>D          | <u>81</u><br>0 | 0,336 | 1.335          |               | 0.2<br>0,3       | 10.3<br>10.6            | 100<br>100 | 8.67<br>8.50  | 11,6<br>11.5              | 0.0500                | RCP<br>RCP  | 21<br>21 | 0.0053                           |                  | 624.32<br>624.32    | 4.8<br>4.8                      | 4.8<br>8.4                        | 0.4<br>0.4          | 0.4<br>0.7 | 0.5 0.<br>0.5 0. |                                |                   | 1.335<br>1.335                  | 10.622<br>10,622                   | 6.37<br>6.96                   | 627,49<br>623,44      | 623.44                  |
| LAT C10            | C10            | 64<br>0        | Ŭ<br>Ŭ          | 64<br>D        | 0.865 | 0.865          |               | 0.0<br>0.3       | 10,0<br>10,3            | 100<br>100 | 8.74<br>\$.67 | 7.6<br>7.5                | 0.049                 |             | 21<br>21 | 0.0023                           |                  | 625,31<br>625,31    |                                 | <u>3.1</u><br>5.8                 | 0.2<br>0.2          |            | 0.5 0.<br>0.5 0. | 1 626,46<br>3 625,31           | 631.00<br>631.00  |                                 | 10.339<br>10.339                   | 5.54<br>5.69                   | 627,59<br>624,44      |                         |
| LAT C11            | Cit            | <u>34</u><br>0 | 0               | 34<br>D        | 0.549 | 0.549          |               | 0.0              | 10.0                    | 100        | 8.74          | 4.8<br>4.8                | 0.039                 |             | 21<br>21 | 0.0009                           |                  | 625.54<br>625.54    |                                 | 2.0                               | 0.1                 |            | 0.5 0            |                                |                   |                                 | 10.284                             | 4,93<br>4.95                   | 625.93<br>624.60      |                         |
| LAT C12            | C12            | <u>64</u><br>0 | 0               | 64<br>0        | 0.905 |                | 10            | 0.0              | 10.0<br>10.3            | 100        | 8.74          | 7,9                       | 0.035                 | RCP         | 21<br>21 | 0.0025<br>(0.0024                | 627.73           | 627.57              | 3.3                             | 3.3                               | 0.2                 | Ö.2        | 0.5 0            |                                | 633.00            | 0,905                           | 10.325<br>10.325                   | 5.27                           | 628.74                | 626.48                  |
| LAT C13            | C13            | 64             | 0               | 64             | 0.558 | 0.558          | 10            | 0.0              | 10.0                    | 100        | 8.74          | 4,9                       | 1 0.04                | RCP         | 21       | 0.0009                           | 629,87           | 629.81              | 2,0                             | 2.0                               | 0,1                 | 0.1        | 0.5 0.           | 0 629.07                       | 635,00            | 0.556                           | 10.526                             | 5.13                           | 631,30                | 628.72                  |
| LAT C14            | C14            | 70             | 0               | Q<br>70        | 0.315 | 0.558          |               | 0,5              | 10,5                    |            | 8.62          |                           | 0.04                  | RCP         |          | , p.0009                         |                  | 629,81              | 2.0                             | 6.0                               | 0.1                 |            | 0.5 0            |                                |                   |                                 | 10.528                             | 5,19<br>4,98                   | 628.72                |                         |
|                    |                | - íð           | Ō               | 0              | 1     | 0,315          |               | 1,0              | 11.0                    |            |               |                           | 0.038                 |             |          | 0.0003                           |                  | 631.00              |                                 | 7.6                               | 0.0                 |            |                  | 4 631,00                       |                   |                                 | 11,019                             | 5,00                           |                       | 629.61                  |

### MIDWAY ROAD RECONSTRUCTION LATERAL CALCULATIONS

### PROPOSED STORM SEWER SYSTEM

|          |             |             |                 |                   |         |                           |               |                  |                         |                       |          |                           | STORM                 | SYSTEM CA  | LOLLAD           | ONS - LATER                      | VL LINES C       | ny main li       | NE                            |                   |             |         |         |                                 |                                      |                                   |                                    | ············ |                       | 1                       |
|----------|-------------|-------------|-----------------|-------------------|---------|---------------------------|---------------|------------------|-------------------------|-----------------------|----------|---------------------------|-----------------------|------------|------------------|----------------------------------|------------------|------------------|-------------------------------|-------------------|-------------|---------|---------|---------------------------------|--------------------------------------|-----------------------------------|------------------------------------|--------------|-----------------------|-------------------------|
|          |             | MANHOLE     | CRINLET         | POINTS            |         | A'A                       | TIME          |                  | INTRATION               | 3                     |          | NON 3                     | e₽                    | e descript | ĸ                |                                  |                  | AUGUC            | HE                            | AD LOSS AT        | CHANGE      | IN SECT | KON     |                                 | ELEV. OF                             |                                   |                                    |              |                       | INVERTAT                |
|          |             |             | POINT           | DIBTANCE          | ¢.c.¥   | TOTAL C'C                 | INLET<br>TIME | TIME IN<br>SEWER | DOWN-<br>STREAM<br>TIME | CLESKON<br>FRECKLENCY | MTENSITY | TOTAL DESIGN<br>DISCHARGE | BLOPE<br>PER<br>PLAN9 | MATERIAL   | SIZE             | FRIGTION<br>ORADIENT<br>SLOPE ST | ur-<br>Stream    | DOWN-<br>STREAM  | UP-<br>STREAM<br>VELOOT<br>Vi |                   | V.3020      | V-1/20  | KI N    | N.O. ELEV<br>AT DESIGN<br>POINT | TOP OF<br>CLINE AT<br>DEMON<br>POINT | TOTAL<br>C'CS'A INTO<br>MAIN LINE | TOTAL INLET<br>TIME TO MAIN<br>UNE |              | up.<br>Stream<br>Pipe | DOWN-<br>STREAM<br>PIPE |
| LATERAL  | INCET       | OTREAM      | DOWN-           | (11)              |         |                           | (min)         | (min)            | (min)                   | (years)               | (intro)  | (cfs)                     | (1/1)                 |            | (in)             | (%)                              | (n)              | (11)             | (fps)                         | (104)             | (ň)         | (t)     | (M      | . m                             | (ft)                                 | (cia)                             | (min)                              | (ft)         | (14)                  | (11)                    |
| LAT C15  | C15         | 84          | 0               | 64                | 0.856   | and the second second     |               | 0.0              | 10.0                    | 100                   | 8.74     | 7.5                       | 0,039                 | RCP        | 21               | 0.0022                           | 831.81           |                  | 3.1                           | 3.1               | 0.2         |         | 0.5 0.  |                                 | 637.00                               | 0,656                             | 10,343                             | 5,19         | 632,76                | 630.27                  |
|          |             | 0           | 0               | Û                 |         | 0.856                     |               | 0,3              | 10.3                    | 100                   | 6.67     | 7.4                       | 0,039                 | RCP        | 21               | 0.0022                           | 631.68           | 631.66           | 3.1                           | 7.2               | 0.1         | 0.8     | 0.5 0.4 | 4 631.65                        | 637.00                               | 0,856                             | 10.343                             | 5.34         | 630,27                | 630.27                  |
| LAT C18  | C18         | 34          | 0               | 34                | 0,336   | 5 0.336                   | 10            | 0,0              | 10.0                    | 100                   | 8.74     |                           | 0.035                 | RCP        | 21               | 0.0003                           |                  |                  |                               | 1.2               | 0,0         |         | 0.5 0.0 |                                 | 630.00                               | 0,336                             | 10.464                             | 3,63         | 631,60                | 630.60                  |
|          |             | Q           | 0               | 0                 |         | 0,336                     |               | 0,5              | 10.5                    | 100                   | 8.64     | 2.9                       | 0.035                 | RCP        | 21               | 0.0003                           | 632,16           | 632.16           | 1.2                           | 6.3               | 0.0         | 0.6     | 0.5 0.: | 3 032.16                        | 636.00                               | 0.336                             | 10,464                             | 3.84         | 630.60                | 630.60                  |
| LAT C17  | C17         | 64          | 0               | 64                | 0.813   | 3 0,813                   | 10            | 0.0              | 10.0                    | 100                   | 8.74     | 7.1                       | 0.046                 | RCP        | 21               | 0.0020                           |                  |                  |                               | 3.0               | 0.1         |         |         | 1 634.88                        |                                      | 0.813                             | 10,361                             | 5.62         | 636.24                |                         |
|          |             | 0           | 0               | 0                 |         | 0,813                     | <u> </u>      | 0.4              | 10.4                    | 100                   | 8.67     | 7.0                       | 0,046                 | RCP        | 21               | 0.0020                           | 634.75           | 634.75           | 2.9                           | \$.1              | 0,1         | 1.3     | 0.5 0.  | 6 634.75                        | 640.50                               | 0.813                             | 10.361                             | 5.75         | 633.3D                | 633,30                  |
| LAT C18  | Ç18         | 34          | 0               | 34                | 0.621   | 1 0.621                   | 10            | 0.0              | 10.0                    | 100                   | 8.74     | 5.4                       | 0.053                 | RCP        | 21               | 0.0012                           | 636.38           | 836.34           | 2.3                           | 2.3               | <b>0</b> .1 | 0.1     | 0.5 0.  | 0 536,38                        | 641,00                               | 0,621                             | 10,251                             | 4.62         | 636.93                | 635,14                  |
|          |             | Ů           | 0               | 0                 | j       | 0.621                     |               | 0.3              | 10.3                    | 100                   | 8.69     | 5,4                       | 0.053                 | RCP        | 21               | 0.0012                           | 636,34           | 636.34           | 22                            | 7.7               | Ũ, 1        | 0.9     | 0.5 9,  | 5 636.34                        | 641.00                               | 0.621                             | 10.251                             | 4.66         | 635.14                | 635,14                  |
| LAT C19  | C19         | 64          | l n             | 64                | 0.835   | 9 0.839                   | 10            | 0.0              | 1 10.0                  | 100                   | 8.74     | 7.3                       | 0.047                 | RCP        | 21               | 0.0021                           | 637.28           | 637.14           | 3.0                           | 3.0               | 0.1         | 0.1     | 0.5 0.  | 1 837.28                        | 842.50                               | 0.639                             | 10.350                             | 5.22         | 639.13                | 636.12                  |
|          |             | 0           | 0               | 0                 | -,      | 0.839                     |               | 0.3              | 10.3                    | 100                   | 8.67     | 7.3                       | 0,047                 | RCP        | 21               | 0.0021                           |                  | 637.14           |                               | <b>6.6</b>        | 0.1         | 0.7     | 0.5 D,  | 3 037,14                        | 842.50                               | 0,839                             | 10,350                             | 5.36         | 638.12                | 636.12                  |
| LAT C21  | C21         | 35          | n I             | 38                | 0.632   | 2 0.632                   | 2 10          | Q.D              | 10.0                    | 100                   | 6.74     | 5,5                       | Ö.014                 | RĈP        | 21               | 0 0012                           | 643.25           | 643,20           | 2.3                           | 2.3               | 0,1         | Û 1     | 0.5 0.  | 0 643.25                        | 845 00                               | 0.632                             | 10,276                             | 1,75         | 841.29                | 640.74                  |
|          |             | 0           | Ō               | 0                 | 1,000   | 0.632                     |               | 0.3              | 10.3                    | 100                   | 8.69     | 5.5                       |                       | RCP        | 21               | 0.0012                           |                  | 643.20           |                               | 8.1               | 0.1         |         | 0.5 0.  |                                 |                                      |                                   | 10.276                             | 1.80         | 640.74                | 640.74                  |
| LAT C22  | 600         | 57          | 1 0             | 57                | 0.027   | 2 0.832                   | 2 10 1        | D.0              | 10.0                    | 100                   | 6.74     | 7.3                       | 6.008                 | RCP        | 21               | 0.0021                           | A4x 00           | 643.97           | 3.0                           | 3.0               | 0.1         | 64      | 0.5 D.  | 1 644.09                        | i 646.00                             | 0.832                             | 10.314                             | 1.91         | 641.41                | 640.97                  |
|          | Codili:     | 0           | Ŏ               | 0                 | 0.632   | 0.832                     |               | 0.3              | 10.3                    | 100                   | 8.67     |                           | 0.008                 | RCP        | 21               |                                  | 643.97           |                  |                               | 6.5               | 0,1         |         | 0.5 0   |                                 |                                      | 0.632                             | 10.314                             | 2.03         | 640.97                | 640.97                  |
| LAT COL  |             | 60          | Ιa              | 60                | 0.400   | 0.408                     | 3 10 1        | 0.0              | 10.0                    | 100                   | 8.74     |                           | 0.007                 | RCP        | 21               | 1 0 0000                         | 645,25           | 600 53           | 1,5                           | 1.5               | 0.0         | 20      | 0.5 0.  | 0 645.26                        | 647.00                               | 8,408                             | 10.675                             | 1.74         | 642.83                | 642.41                  |
| LAT C25  | <u>C25</u>  |             | 0               | 0                 | 10.400  | 0.408                     |               | 0.0              | 10,7                    | 100                   | 8.60     | 3,5                       | 0.007                 | RCP        | 21               | 0.0005                           |                  | 645,23           |                               | 2,7               | 0,0         |         | 0.5 0.  |                                 |                                      | 0.408                             | 10,675                             | 1.74         | 642.63                | 642.41                  |
|          | 0.00        | 3 40.       | i o             | 40                | 0.00    |                           |               |                  | 10.0                    | 160                   | 8.74     | 5.4                       |                       | 000        | 1 0-             | 0.0014                           | 4.6.00           | 634 03           | 2.5                           | 2.5               | 0.1         | 51      | 0.6 0.  | 0 645.03                        | 646.50                               | 1 0.680                           | 10.270                             | 1.47         | 642.57                | 642.17                  |
| LAT C26  | C26         | 40          |                 | 0                 | 0.68    | 0.68                      |               | 0.0              | 10.0                    | 100                   | 8.69     | 5,9                       | 0.01                  | RCP<br>RCP | 21<br>21         |                                  | 644.97           |                  |                               | 4.4               | 0.1         |         | 0.5 0.  |                                 | 646,50                               | 0,680                             | 10,270                             | 1.47         | 642.17                | 642.17                  |
|          | 003         | 1 414       |                 |                   |         |                           |               |                  |                         | 462                   | 1071     |                           |                       | 0.00       | 0.7              |                                  | 10.6.10          | S . A . T        |                               | 2.2               |             |         | 2.0     | n                               | 0.40.00                              | 0,616                             | 10.417                             | 0.44         | 044 85                | 642.64                  |
| LAT C27  | <u>C27</u>  |             |                 | 60                | 0,010   | 0.616                     |               | 0.0              | 10,0                    | 100                   | 8.74     | <u>5.4</u><br>5.3         | 0.007                 | RCP<br>RCP | 21               | 0.0012                           | 645.46<br>645.40 |                  |                               | 1.7               | 0.1         |         | 0,5 0.  |                                 |                                      | 0.616                             | 10,447                             | 2.54         | 644,03<br>643.61      | 643.61<br>643.61        |
|          |             | ļ.          | -               |                   | ļ.      |                           |               |                  |                         |                       |          |                           |                       |            |                  | -                                |                  |                  |                               |                   |             |         | 1       |                                 |                                      |                                   |                                    |              |                       |                         |
| LAT C23  | <u>c</u> 23 | 48          | <u> </u>        | 48                | Q.458   | 6 0.450<br>0.458          |               | 0.0              | 10.0                    | 100                   | 8.74     | 4.0                       | 0.029                 | RCP        | 1 <u>8</u><br>18 |                                  | 618.89<br>618.82 |                  |                               | 2,3               | 0.1         |         | 0.5 0.  | 0 618,89                        |                                      |                                   | 10.355                             | 3.10         | 620.07<br>618.67      | 618.67<br>618.67        |
|          | <u>.</u>    | ,<br>,      |                 | •                 |         | <u> </u>                  |               |                  |                         | <u>`</u>              |          |                           | 1                     |            |                  | *                                |                  |                  |                               |                   |             |         |         |                                 |                                      |                                   |                                    |              |                       |                         |
| LAT 24A  | C24A        | 200         |                 | 200               | 0.706   | 6 0.705<br>0.705          |               | 0.0              | 10.0                    | 100                   | 8.74     | 6,2<br>6.0                | D,01<br>0.01          | RCP        | 21               |                                  | 617.51           |                  |                               | 2.6               | 0.1         | 0.1     | 0.5 0   |                                 | 621,99                               | 0,706                             | 11.300                             | 4.48         | 618.73                | 614.73<br>614.73        |
|          | 1           | · · · · · · |                 |                   |         | 1                         |               |                  |                         |                       |          |                           |                       |            |                  |                                  |                  |                  |                               | <b>,</b>          |             |         |         |                                 |                                      |                                   |                                    |              |                       | -                       |
| LAT C24  | C24<br>C24A |             | <u>85</u><br>52 | <u>14.3</u><br>33 |         | <u>5 0.481</u><br>6 1.162 |               | 0.0              | 10.0                    | 100                   | 8.44     | 4.3<br>9.0                | 0.029                 | RCP<br>RCP | 21               | 0.0007                           |                  | 618.82<br>618.82 |                               | <u>1,8</u><br>4,1 | 0.0         |         | 0.5 0   | 0 618.83                        | 622.13                               |                                   | 11.588                             | 3.30         | 619.09                | 618.67                  |
| <u> </u> | C23         |             | 0               | 67                |         | 0 1.104<br>6 1,018        |               |                  | 11.4                    | 100                   | 6.38     | 13.6                      |                       | RCP        | 21               | 0.0038                           |                  | 618.44           |                               | 5.6               | 0.5         |         | 0.5 0   |                                 | 622,13                               | 1,61B                             | 11.568                             | 3.31         | 618.67                | 517.14                  |
|          | [           | 10          | 0               | 0                 |         | 1.61                      | a 🔹           | 0.2              | 11.6                    | 100                   | 8,35     | 13.5                      | 0.029                 | RCP        | 21               | 0.0073                           | 618.44           | 618.44           | 5.6                           | 4.5               | 0,5         | 0,3     | 0,5 0   | 2 618.44                        | 622.13                               | 1.618                             | 11.588                             | 3.69         | 617.14                | 617.14                  |
| LAT D2   | 02          | 32          | 1 0             | 32                | 0,55    | i 0,56                    | 10            | 0.0              | 10,0                    | 100                   | 8.74     | 4.9                       | 0.015                 | RCP        | 21               | 0.0010                           | 617.48           | 617.45           | 2.0                           | 2.0               | 0.1         | 0.1     | 0,5 0   | .0 617,48                       | 620.50                               | 0,560                             | 10.262                             | 3,02         | 616,21                | 615,73                  |
|          | 1           | 0           | 0               | Q                 | 1       | 0.55                      |               | Ċ,3              | 10,3                    | 100                   |          |                           | 0.015                 | RCP        | 21               |                                  | 617.45           | 617.45           | 2,0                           | 3.0               | 0.1         | 0.1     | 0.5 0   | 1 617.45                        | 620.50                               | 0.560                             | 10.262                             | 3,05         | 615.73                | 615.73                  |
| LAT DIA  | DIA         | 32          | 0               | 32                | 0 400   | 8 0.40                    | 5 10          | 0.0              | 10.0                    | 100                   | 8.74     | 3.6                       | 0.015                 | RCP        | 21               | 0 0005                           | 617.22           | 617.21           | 1 1.5                         | 1.5               | 0.0         | 0.0     | 0.5 0   | 0 617.22                        | 619.00                               | 0,408                             | 10,360                             | 1,70         | 015.21                | 614.73                  |
|          |             | 0           | t õ             | 0                 | <u></u> | 0.40                      |               | 0.4              | 10.4                    | 100                   |          | 3.5                       |                       |            | 21               | 0.0005                           |                  | 617.21           |                               | 3.3               | 0.0         | 0.2     |         |                                 |                                      |                                   | 10,360                             | 1,79         | 614.73                |                         |
| LAT OIB  | 018         | 32          | 0               | 32                | 6 37    | 5 0,37                    | 5 10          | 0.0              | 10.0                    | 100                   | 8.74     | 33                        | 0.013                 | RCP        | 21               | 0.0084                           | 617.13           | 617.12           | 1.4                           | 1.4               | 0.0         | 0.0     | 0.5 0   | 01 617.13                       | 619.00                               | 0.376                             | 10,390                             | 1.87         | 615.09                | 614.68                  |
|          | t           | 0           | ŏ               | 0                 | 1       | 0.37                      |               | 0,0              | 10.4                    | 100                   |          | 3.3                       | 0.013                 |            | 21               | 0.0004                           |                  | 617.12           |                               | 3.7               | 0.0         | 0.2     |         |                                 |                                      |                                   | 10,390                             | 1.88         | 614.68                |                         |

.

#### MIDWAY ROAD RECONSTRUCTION STORM SEWER CALCULATIONS

#### **PROPOSED STORM SEWER SYSTEM**

| LINE           263:01         PCINT           UP         DOWN           STREAM         STREAM           158         36.96           30.96         0           6         0           222         303           303         200           200         108           108         0           200         108           1311.8         2961.           2031.0         2732.           2031.0         2731.1           2732.8         2800.1           2341.1         2783.2           2340.7         2023.1           2249.1         2248.2           2180.7         2023.1           1890.7         1924.5           1890.7         1924.5           1890.7         1924.5           1240.2         1380.8           1240.2         1380.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Distance         Distance           BETWEP         BETWEP           BETWEP         BETWEP           BAM         (fu           E         B           33         19.00           C         103.00           B         92.00           106.00         106.00           105.00         106.00           1.6         150.00           1.8         150.00           1.8         150.00           28         28.28           2.2         82.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATERAL<br>NAMER<br>LAT A1<br>LINE B<br>LAT B1<br>GBRK<br>LAT B1<br>GBRK<br>LAT B3<br>LAT C27<br>LAT C25<br>LAT C25<br>LAT C22<br>LAT C21<br>LAT C27                              | C"C#*A<br>(CKTERINC<br>IMLT)<br>1.403<br>1.951<br>0.000<br>0.3324<br>1.200<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000 | 1.403<br>3.354<br>3.354<br>1.520<br>1.620<br>1.620<br>1.620<br>1.620<br>1.621<br>1.621<br>1.621<br>1.621<br>1.624<br>1.704<br>2.536                                                  | INLET<br>Tike<br>(min)<br>10.1<br>11.8<br>0.0<br>10.1<br>10.1<br>10.3                             | 11kdE IN<br>SEWER<br>(nWh)<br>0.0<br>0.8<br>0.1<br>0.1<br>0.0<br>0.3<br>0.4<br>0.3<br>0.5                         | Intration           DOWH           DOWH           DREAM           TLAS           (min)           10,1           11,8           11,8           11,1           11,1           11,1           11,8           11,1           11,1           11,3           11,1           11,3 | хонаторны<br>3 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 6.72<br>6.72<br>6.72<br>6.87<br>6.57<br>6.47<br>6.32                             | TOTAL<br>DESIGN<br>DESCHARGE<br>(cl4)<br>27.9<br>27.8<br>27.8<br>27.8<br>27.8<br>27.8<br>14.0<br>13.9<br>14.0<br>13.9<br>15.5<br>16.2 | AGLECTED<br>PPE SLOPE<br>(%7)<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005 | MUMBER<br>BARRELA<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | PIPE MATL<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP | SELECTEC           SIZE OF           MPE OF           (in)           30           30           30           30           30           30           30           30           30           30           30           30           30 | CAPACITY OF<br>PIPE<br>(cfs)<br>27.5<br>29.0<br>29.0<br>29.0<br>33.0<br>10.6 | FRCTION<br>ORADIENT<br>SLOPE SI<br>(%)<br>0.0009<br>0.0048<br>0.0048<br>0.0048 | 0RADIE<br>UP-<br>3TREAM<br>(1)<br>618.98<br>618.43<br>618.12<br>818.18 | (f)<br>616.58<br>615.24<br>816.12<br>618.18           | UP-<br>STREAM<br>VELOCITY<br>VI<br>((m)<br>2.5<br>5.7<br>5.7 | 5.7<br>0.0                                               | vil2s<br>(ň)<br>0.097<br>0.502<br>0.498 | V2 <sup>4</sup> /2g<br>(h)<br>0.502<br>0.498<br>0.000 | N<br>0.75<br>0.76 |                             | FRIC                                                                 | 818.43<br>618.12                                                          | 610.70<br>610.50                                     | 2004/14<br>2004/14<br>21762-244<br>2175<br>2175<br>210-250<br>210-250<br>210-250<br>210-250 | 818.00<br>                                             | (n)<br>1.04<br>-<br>-<br>- |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-------------------|-----------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------|
| UP. DOWN<br>3TREAM 3TREA<br>158 39.96 0<br>0 2<br>LINE<br>339.96 0<br>0 2<br>100<br>200 108<br>106 0<br>200 108<br>106 0<br>200 108<br>106 0<br>200 108<br>106 0<br>108 0<br>200 108<br>108 0<br>200 108 0<br>200 108<br>108 0<br>108 0 | E Frive         E A           AM         (h)           E A         39,98           0.00         39,98           3 118.02         0.00           E B         3           3 19.00         0.00           B 100.00         108.00           C 103.00         0.00           B 22.00         108.00           L 20.00         108.00           L 30.00         1.5           L 30.00         1.5           L 28.23.28         28.28           2.28.28         2.28.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATERAL<br>NAMER<br>LAT A1<br>LINE B<br>LAT B1<br>GBRK<br>LAT B1<br>GBRK<br>LAT B3<br>LAT C27<br>LAT C25<br>LAT C25<br>LAT C22<br>LAT C21<br>LAT C27                              | (ENTERING<br>IMLET)<br>1.403<br>1.953<br>0.800<br>0.324<br>1.296<br>0.000<br>0.3324<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.632                   | C-C4'A<br>[ENTERNO<br>RAET]<br>1.403<br>3.354<br>3.354<br>3.354<br>1.620<br>1.620<br>1.620<br>1.620<br>1.620<br>1.620<br>1.625<br>1.625<br>1.625<br>1.625<br>1.624<br>1.704<br>2.538 | Tiket<br>(min)<br>10.1<br>11.6<br>0.0<br>10.1<br>10.1<br>10.3<br>10.1<br>0.0<br>10.1<br>10.1<br>1 | SEWER<br>(mm)<br>0.0<br>0.8<br>0.1<br>0.0<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.5<br>0.00<br>1.47 | STREAM<br>TIME<br>(min)<br>10,1<br>11,8<br>11,8<br>11,8<br>11,8<br>11,8<br>11,8<br>11,8                                                                                                                                                                                    | (juera)<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100     | (eviler)<br>8.74<br>8.32<br>8.29<br>8.29<br>8.87<br>8.57<br>8.57<br>8.47<br>8.32 | DESIGN<br>DISCHARGIE<br>(dis)<br>12.3<br>27.9<br>27.8<br>27.8<br>27.8<br>14.0<br>15.5                                                 | 0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.0021<br>0.0021<br>0.003<br>0.003                       |                                                      | RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP                     | SUZE OF<br>MPE<br>(n)<br>30<br>30<br>30<br>30<br>21<br>24<br>24                                                                                                                                                                     | CAPACITY OF<br>PIPE<br>(cfs)<br>27.5<br>29.0<br>29.0<br>29.0<br>33.0<br>10.6 | 0.0009<br>0.0009<br>0.0009<br>0.0046<br>0.0048<br>0.0048<br>0.0048<br>0.0048   | 31REAM<br>(1)<br>616.98<br>616.43<br>618.12<br>618.18                  | 3785AM<br>(A)<br>616.58<br>616.24<br>616.12<br>618.18 | STREAM<br>VELOCITY<br>((pm)<br>2.5<br>5.7<br>5.7             | 87.85.44<br>VELOCITY<br>V2<br>(fps)<br>5.7<br>5.7<br>0.0 | (h)<br>0.097<br>0.502<br>0.498          | (P)<br>0.502<br>9.498<br>0.000                        | 0.75              | (*)<br>0.43<br>0.12<br>0.00 | BASED ON<br>FRECTION<br>OR PROP<br>0<br>FRIC<br>FRIC<br>FRIC<br>FRIC | ELEV, AT<br>DESIGN<br>POINT<br>(U/S)<br>(1)<br>818.95<br>818.43<br>618.12 | 5TREAA4<br>P3PE<br>(1)<br>611.24<br>610.70<br>610.50 | 517REAM<br>PIP2<br>[15]<br>610.70<br>610.50<br>610.50                                       | CURB<br>ELEVATION<br>(*)<br>818.00<br>-<br>-<br>621.50 | (n)<br>1.04<br>3.32        |
| STREAM         STREAM           158         36.96           38.96         0           6         0           200         0           200         108           108         0           200         108           108         0           200         108           111.8         2961.           2031.0         2752.           2732.8         2800.           2731.0         2732.8           2060.0         2381.           2791.8         2752.           2732.8         2800.7           2030.7         1980.7           1924.5         1880.           1924.5         1880.           1936.7         1982.7           1937.7         1460.2           1380.8         1283.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AMI (1)<br>E A<br>88 118.02<br>39.98<br>0.00<br>E B<br>3 19.00<br>0 103.00<br>108.00<br>108.00<br>108.00<br>108.00<br>108.00<br>108.00<br>1.6 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.8 150.00<br>1.2 12 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LINE B<br>LAT B2<br>LAT B1<br>GBRK<br>LAT B3<br>LAT C27<br>LAT C26<br>LAT C26<br>LAT C26<br>LAT C26<br>LAT C26<br>LAT C27<br>LAT C26<br>LAT C27<br>LAT C26<br>LAT C21<br>LAT C27 | 1.951<br>0.000<br>0.324<br>1.296<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000                                                                               | 3.354<br>3.354<br>0.324<br>1.620<br>1.620<br>1.951<br>1.851<br>1.851<br>1.851<br>1.851<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951                       | 10.1<br>11.8<br>0.0<br>10.1<br>10.3                                                               | 0.0<br>0.8<br>0.1<br>0.3<br>0.4<br>0.3<br>0.5<br>0.00<br>1.47                                                     | 10,1<br>11,8<br>11,8<br>11,8<br>10,1<br>10,1<br>10,5<br>10,1<br>10,5<br>11,1<br>11,8<br>11,1<br>11,8                                                                                                                                                                       | 100<br>100<br>100<br>100<br>100<br>100<br>100                       | 8.74<br>8.32<br>8.29<br>6.72<br>8.87<br>8.57<br>8.57<br>8.57<br>8.47<br>8.32     | 12.3<br>27.9<br>27.8<br>27.8<br>14.0<br>13.9<br>16.5                                                                                  | 0.005<br>0.005<br>0.005<br>0.021<br>0.021<br>0.021<br>0.023<br>0.003                                                             | 1<br>1<br>1<br>1<br>1                                | RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP                     | 30<br>36<br>30<br>21<br>24<br>24                                                                                                                                                                                                    | 27.8<br>29.0<br>29.0<br>29.0<br>23.0<br>33.0<br>19.6                         | 0.0009<br>0.0048<br>0.0048<br>0.0048<br>0.0003<br>0.0003                       | 616.98<br>616.43<br>618.12<br>618.18                                   | 616.58<br>616.24<br>616.12<br>616.18                  | 2.5<br>5.7<br>5.7                                            | 5.7<br>5.7<br>0.0                                        | 0.097<br>0.502<br>0.498                 | 0.502<br>0.498<br>0.000                               | 0.76              | 0.43<br>0.12<br>0.00        | PROP<br>FINIC<br>FRIC<br>FRIC                                        | 818.95<br>518.43<br>518.12                                                | 611.24<br>610.70<br>910.50                           | 610,70<br>610,50<br>810,50                                                                  | 621.50                                                 | 1.04                       |
| 158 36.66<br>36.96 0<br>0 0<br>0 0<br>222 303<br>303 200<br>200 106<br>200 106<br>108 0<br>0 0<br>0 0<br>200 106<br>108 0<br>0 0<br>0 0<br>200 106<br>108 0<br>0 0<br>0 0<br>0 0<br>200 108<br>108 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86         118.02           39.98         0.00           5         0.00           6         103.00           6         103.00           7         108.02           108.02         0.00           108.02         0.00           108.02         0.00           108.02         0.00           108.02         0.00           108.02         0.00           1.6         150.00           1.8         150.00           1.8         150.00           1.2         28.80           2.2         8.28.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LINE B<br>LAT B2<br>LAT B1<br>GBRK<br>LAT B3<br>LAT C27<br>LAT C26<br>LAT C26<br>LAT C26<br>LAT C26<br>LAT C26<br>LAT C27<br>LAT C26<br>LAT C27<br>LAT C26<br>LAT C21<br>LAT C27 | 1.951<br>0.000<br>0.324<br>1.296<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000                                                                               | 3.354<br>3.354<br>0.324<br>1.620<br>1.620<br>1.951<br>1.851<br>1.851<br>1.851<br>1.851<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951                       | 11.8<br>9.0<br>10.1<br>10.1<br>10.3                                                               | 0.8<br>0.1<br>0.3<br>0.4<br>0.5<br>0.00<br>1.47                                                                   | 11.8<br>11.8<br>10.1<br>10.4<br>10.8<br>11.1<br>11.8<br>10.4                                                                                                                                                                                                               | 100<br>100<br>100<br>100<br>100<br>100<br>100                       | 8.32<br>6.29<br>6.72<br>8.67<br>8.57<br>6.47<br>8.32                             | 27.9<br>27.8<br>27.8<br>25<br>14.0<br>13.9<br>16.5                                                                                    | 0.005<br>0.005<br>0.021<br>0.021<br>0.021<br>0.008<br>0.009                                                                      | 1<br>1<br>1<br>1<br>1                                | RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP                     | 30<br>30<br>21<br>24<br>24                                                                                                                                                                                                          | 23.0<br>29.0<br>23.0<br>33.0<br>10.6                                         | 0.0048<br>9.0048<br>0.0048<br>0.0003<br>9.0003                                 | 818.43<br>818.12<br>818.18                                             | 616.24<br>616.12<br>616.18                            | 5.7<br>5.7                                                   | 5.7<br>0.0                                               | 0.502<br>0.498                          | 0.498<br>0.000                                        | 0.76              | 0.12                        | FRIC                                                                 | 818.43<br>618.12                                                          | 610.70<br>610.50                                     | 610.50<br>610.50                                                                            | -<br>-<br>621.50                                       |                            |
| 38,96 0<br>6 0<br>1<br>LINE<br>322 303<br>303 200<br>200 108<br>1033 200<br>200 108<br>104 0<br>0 0<br>0 0<br>105 108<br>106 108<br>107 0<br>108 108<br>108 108<br>108 108<br>111.8 2961.<br>2761.8 2751.<br>2762.8 2661.<br>2762.8 2660.<br>2660.0 2381.<br>2761.8 2752.<br>2660.0 2381.<br>2762.8 2660.<br>2660.0 2381.<br>2762.8 2660.<br>2762.8 2760.<br>2762.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39,96<br>0.00<br>2 103,00<br>6 92,00<br>108,00<br>108,00<br>108,00<br>108,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>105,00<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LINE B<br>LAT B2<br>LAT B1<br>GBRK<br>LAT B3<br>LAT C27<br>LAT C26<br>LAT C26<br>LAT C26<br>LAT C26<br>LAT C26<br>LAT C27<br>LAT C26<br>LAT C27<br>LAT C26<br>LAT C21<br>LAT C27 | 1.951<br>0.000<br>0.324<br>1.296<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000<br>0.331<br>0.000                                                                               | 3.354<br>3.354<br>0.324<br>1.620<br>1.620<br>1.951<br>1.851<br>1.851<br>1.851<br>1.851<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951<br>1.951                       | 11.8<br>9.0<br>10.1<br>10.1<br>10.3                                                               | 0.8<br>0.1<br>0.3<br>0.4<br>0.3<br>0.5<br>0.5<br>0.00<br>1.47                                                     | 11.8<br>11.8<br>10.1<br>10.4<br>10.8<br>11.1<br>11.8<br>10.4                                                                                                                                                                                                               | 100<br>100<br>100<br>100<br>100<br>100<br>100                       | 8.32<br>6.29<br>6.72<br>8.67<br>8.57<br>6.47<br>8.32                             | 27.9<br>27.8<br>27.8<br>25<br>14.0<br>13.9<br>16.5                                                                                    | 0.005<br>0.005<br>0.021<br>0.021<br>0.021<br>0.008<br>0.009                                                                      | 1<br>1<br>1<br>1<br>1                                | RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP<br>RCP                     | 30<br>30<br>21<br>24<br>24                                                                                                                                                                                                          | 23.0<br>29.0<br>23.0<br>33.0<br>10.6                                         | 0.0048<br>9.0048<br>0.0048<br>0.0003<br>9.0003                                 | 818.43<br>818.12<br>818.18                                             | 616.24<br>616.12<br>616.18                            | 5.7<br>5.7                                                   | 5.7<br>0.0                                               | 0.502<br>0.498                          | 0.498<br>0.000                                        | 0.76              | 0.12                        | FRIC                                                                 | 818.43<br>618.12                                                          | 610.70<br>610.50                                     | 610.50<br>610.50                                                                            | -<br>-<br>621.50                                       |                            |
| 0 0<br>LINE<br>322 303<br>303 200<br>200 108<br>106 0<br>0 0 0<br>LINE<br>3111.8 2901.<br>2931.0 2781.<br>2732.8 2800.<br>2732.8 2800.<br>2732.8 2800.<br>2249.2 (2180.<br>2249.2 (2180.<br>2249.7 1692.<br>1820.7 1692.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E B<br>3 19.00<br>0 103.00<br>6 92.00<br>108.00<br>108.00<br>108.00<br>1.5 30.00<br>1.5 30.00<br>1.5 30.00<br>1.5 30.00<br>1.5 30.00<br>1.5 32.82<br>2.8 28.50<br>2.2 52.8 50<br>2.2                       | LAT B2<br>LAT B1<br>GBRA<br>LAT 23<br>LAT 23<br>LAT 23<br>LAT 225<br>LAT 225<br>LAT 225<br>LAT 225                                                                               | 0.000<br>0.324<br>1.296<br>0.000<br>0.331<br>0.000<br>0.000<br>0.000<br>0.690<br>0.690<br>0.690<br>0.632                                                                      | 3.354<br>0.324<br>1.620<br>1.620<br>1.951<br>1.851<br>0.616<br>1.024<br>1.704<br>2.538                                                                                               | 0.0<br>10.1<br>10.3<br>10.1<br>0.0<br>10.4<br>10.7<br>10.3                                        | 0,1<br>0,0<br>0,3<br>0,4<br>0,3<br>0,5<br>0,00<br>1,47                                                            | 11.8<br>10.1<br>10.4<br>10.8<br>11.1<br>11.8<br>10.4                                                                                                                                                                                                                       | 100<br>100<br>100<br>100<br>100                                     | 8.29<br>8.72<br>8.87<br>8.57<br>8.57<br>8.32                                     | 27.8<br>2.8<br>14.5<br>13.9<br>16.5                                                                                                   | 0.005<br>0.021<br>0.021<br>0.008<br>0.008                                                                                        | 1<br>1<br>1                                          | RCP<br>RCP<br>RCP<br>RCP<br>RCP                                   | 30<br>21<br>24<br>24                                                                                                                                                                                                                | 29.0<br>23.0<br>33.0<br>19.8                                                 | 9.0048<br>9.0003<br>9.0003<br>9.0039                                           | 618.12<br>818.18                                                       | 616.12<br>618.18                                      | 5.7                                                          | 0.0                                                      | Q.498                                   | 0,000                                                 |                   | 0.00                        | FRIC                                                                 | 618.12                                                                    | 610.50                                               | 810.50                                                                                      | 621.50                                                 | 3.32                       |
| LINE 322 303 303 200 200 108 108 0 0 0 0 0 LINE 3111.8 2901. 2061.8 2931. 2761.8 2732. 2762.8 29600. 2761.8 2732. 2762.8 29600. 2381.1 2238. 2286.2 2180. 2780.1 2238. 2286.2 2180. 1924.5 1850. 1924.5 1850. 1924.5 1850. 1924.5 1850. 1924.5 1850. 1924.5 1850. 1360.7 1638. 1473.7 1460. 3460.2 1380.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E B<br>3 19.00<br>0 103.00<br>8 92.00<br>108.00<br>108.00<br>108.00<br>105.00<br>1.5 30.00<br>1.5 30.00<br>1.5 30.00<br>1.5 35.00<br>2.8 23.78<br>0.0 152.84<br>1.2 238.80<br>2.2 828.80<br>2.2 82 | LAT B1<br>GBRK<br>LAT B3<br>LAT C27<br>LAT C25<br>LAT C25<br>LAT C25<br>LAT C22<br>LAT C21<br>LAT C21<br>GBRK                                                                    | 0.324<br>1.206<br>0.000<br>0.331<br>0.000<br>0.016<br>0.409<br>0.660<br>0.660<br>0.632                                                                                        | 0.324<br>1.620<br>1.951<br>1.851<br>0.616<br>1.024<br>1.704<br>2.538                                                                                                                 | 10.1<br>10.3<br>10.1<br>0.0<br>10.4<br>10.7<br>10.3                                               | 0.0<br>0.3<br>0.4<br>0.3<br>0.5<br>0.5<br>0.00<br>1.47                                                            | 10.1<br>30.4<br>10.8<br>11.1<br>11.8                                                                                                                                                                                                                                       | 100<br>100<br>100<br>100<br>100                                     | 8.72<br>8.87<br>8.57<br>8.47<br>8.32                                             | 2.8<br>14,0<br>13,9<br>16,5                                                                                                           | 0.021<br>0.021<br>0.008<br>0.008                                                                                                 | 1<br>1<br>1                                          | RCP<br>RCP<br>RCP<br>RCP                                          | 21<br>24<br>24                                                                                                                                                                                                                      | 23.0<br>33.0<br>19.6                                                         | 0.0003<br>9.0039                                                               | 818.18                                                                 | 616.16                                                |                                                              |                                                          |                                         |                                                       |                   |                             |                                                                      |                                                                           |                                                      |                                                                                             | 621.50                                                 | 3.32                       |
| 322         303         200           303         200         200           200         108         0           0         0         0           111.8         2961.0         2761.8           3111.8         2981.0         2781.8           2761.8         2783.1         2782.8           2760.0         2381.1         2298.2           2180.7         2023.7         1980.7           1924.5         1850.7         1624.7           1835.7         1473.7         1460.2           1436.2         1380.8         1283.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3         19.00           0         103.00           8         92.00           108.00         0.00           0         0.00           E         C           1.6         150.00           1.8         150.00           2.8         28.76           0.0         152.84           1.2         238.80           8.2         82.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LAT B1<br>GBRK<br>LAT B3<br>LAT C27<br>LAT C25<br>LAT C25<br>LAT C25<br>LAT C22<br>LAT C21<br>LAT C21<br>GBRK                                                                    | 1296<br>0.000<br>0.331<br>0.000<br>0.616<br>0.409<br>0.680<br>0.632                                                                                                           | 1.520<br>1.620<br>1.951<br>1.851<br>1.851<br>0.616<br>1.024<br>1.704<br>2.538                                                                                                        | 10.3<br>10.1<br>0.0<br>10.4<br>10.7<br>10.3                                                       | 0.3<br>0.4<br>0.3<br>0.5<br>0.5                                                                                   | 10.4<br>10.8<br>11.1<br>11.8<br>10.4                                                                                                                                                                                                                                       | 100<br>100<br>100<br>100                                            | 8.87<br>8.57<br>8.47<br>8.32                                                     | 14,0<br>13,9<br>16.5                                                                                                                  | 0.021<br>0.008<br>0.008                                                                                                          | 1<br>1<br>1                                          | RCP<br>RCP<br>RCP                                                 | 24<br>24                                                                                                                                                                                                                            | 33.0<br>19.6                                                                 | 0.0039                                                                         |                                                                        |                                                       |                                                              |                                                          |                                         |                                                       |                   | 0.29                        | ERIC                                                                 | A48 18                                                                    | 615.83                                               | 815,43                                                                                      |                                                        |                            |
| 322         303         200           303         200         200           200         108         0           0         0         0           111.8         2961.0         2761.8           3111.8         2981.0         2781.8           2761.8         2783.1         2782.8           2760.0         2381.1         2298.2           2180.7         2023.7         1980.7           1924.5         1850.7         1624.7           1835.7         1473.7         1460.2           1436.2         1380.8         1283.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3         19.00           0         103.00           8         92.00           108.00         0.00           0         0.00           E         C           1.6         150.00           1.8         150.00           2.8         28.76           0.0         152.84           1.2         238.80           8.2         82.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LAT B1<br>GBRK<br>LAT B3<br>LAT C27<br>LAT C25<br>LAT C25<br>LAT C25<br>LAT C22<br>LAT C21<br>LAT C21<br>GBRK                                                                    | 1296<br>0.000<br>0.331<br>0.000<br>0.616<br>0.409<br>0.680<br>0.632                                                                                                           | 1.520<br>1.620<br>1.951<br>1.851<br>1.851<br>0.616<br>1.024<br>1.704<br>2.538                                                                                                        | 10.3<br>10.1<br>0.0<br>10.4<br>10.7<br>10.3                                                       | 0.3<br>0.4<br>0.3<br>0.5<br>0.5                                                                                   | 10.4<br>10.8<br>11.1<br>11.8<br>10.4                                                                                                                                                                                                                                       | 100<br>100<br>100<br>100                                            | 8.87<br>8.57<br>8.47<br>8.32                                                     | 14,0<br>13,9<br>16.5                                                                                                                  | 0.021<br>0.008<br>0.008                                                                                                          | 1<br>1<br>1                                          | RCP<br>RCP<br>RCP                                                 | 24<br>24                                                                                                                                                                                                                            | 33.0<br>19.6                                                                 | 0.0039                                                                         |                                                                        |                                                       |                                                              |                                                          |                                         | 0.070                                                 | 1                 | 0.20                        | ERIC                                                                 | A18 18                                                                    | 615.83                                               | 815,43                                                                                      |                                                        |                            |
| 303         200           200         108           108         0           0         0           111.8         2901.0           2761.8         2931.0           2761.8         2931.0           2761.8         2752.2           2600.0         2381.1           2201.2         2762.8           2600.0         2381.1           2201.2         2180.7           2180.7         2023.1           2202.2         2180.7           2023.7         1980.7           1820.7         1924.5           1820.7         1924.5           1820.7         1924.5           1820.7         1924.5           1820.7         1924.5           1820.7         1820.2           1820.2         1380.2           1473.7         1440.2           1380.8         1283.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 92.00<br>108.00<br>0.00<br>E C<br>1.6 150.00<br>1.5 30.00<br>1.8 150.00<br>2.8 28.78<br>0.0 152.84<br>1.2 238.80<br>8.2 52.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GBRK<br>LAT B3<br>LAT C27<br>LAT C25<br>LAT C26<br>LAT C26<br>LAT C21<br>LAT C21<br>GBRK                                                                                         | 0.000<br>0.331<br>0.000<br>0.616<br>0.409<br>0.680<br>0.632                                                                                                                   | 1.620<br>1.951<br>1.851<br>0.616<br>1.024<br>1.704<br>2.538                                                                                                                          | 10,1<br>0,0<br>10,4<br>10,7<br>10,3                                                               | 0.4<br>0.3<br>0.5<br>0.00<br>1.47                                                                                 | 10.8<br>11.1<br>11.8<br>10.4                                                                                                                                                                                                                                               | 100<br>100<br>100                                                   | 8.57<br>6.47<br>8.32                                                             | 13.9<br>16.5                                                                                                                          | 0.008                                                                                                                            | 1                                                    | RCP                                                               | 24<br>24                                                                                                                                                                                                                            | 19.6                                                                         |                                                                                | 617.88                                                                 |                                                       | 12                                                           | 4.5                                                      | 0.021                                   | 0.310                                                 | 10.10             |                             |                                                                      |                                                                           |                                                      |                                                                                             |                                                        |                            |
| 108         0           0         0         0           LINE         2861.         2861.           3111.8         2961.0         2761.8           2761.8         2783.1         2782.8           2760.0         2381.1         2298.2           2260.1         2286.2         2180.7           2280.2         2180.7         2023.7           1990.7         1624.5         1680.2           1924.5         1680.7         1638.7           1473.7         1460.2         1380.2           1380.8         1283.3         1283.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E C<br>1.8 150.00<br>1.5 30.00<br>1.8 150.00<br>1.8 150.00<br>2.8 28.79<br>0.0 152 84<br>1.2 238.80<br>8.2 52 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LAT B3                                                                                                                                                                           | 0.331<br>0.000<br>0.916<br>0.438<br>0.680<br>0.832<br>0.632                                                                                                                   | 1.951<br>1.851<br>0.616<br>1.024<br>1.704<br>2.538                                                                                                                                   | 10,1<br>0,0<br>10,4<br>10,7<br>10,3                                                               | 0,3<br>0.5<br>0.00<br>1.47                                                                                        | 11.1<br>11.8<br>10.4                                                                                                                                                                                                                                                       | 100                                                                 | <u>8.47</u><br>8.32                                                              | 16.5                                                                                                                                  | 0.008                                                                                                                            | 1                                                    | RCP                                                               |                                                                                                                                                                                                                                     |                                                                              | 0.0036                                                                         |                                                                        |                                                       | 4,5                                                          | 4.4                                                      | 0.310                                   | 0,304                                                 |                   | 0.07                        | FRIC                                                                 | 617,88                                                                    |                                                      | \$12.98                                                                                     | \$22.00                                                | 4,12                       |
| 0         0           3111.8         2961.1           2061.8         2931.0           2761.8         2931.0           2761.8         2752.9           2600.0         2381.           2201.1         2762.8           2600.0         2381.           2201.7         2900.0           2600.7         2023.7           1980.7         1924.5           1880.7         1924.5           1836.7         1473.7           1430.2         1380.8           1380.8         1283.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E C<br>1.6 150.00<br>1.5 30.00<br>1.8 150.00<br>2.8 28.79<br>0.0 152.84<br>1.2 238.80<br>8.2 52.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LAT C27<br>LAT C25<br>LAT C25<br>LAT C26<br>LAT C27<br>LAT C21<br>LAT C21<br>GBRK                                                                                                | 0.000<br>0.616<br>0.438<br>0.690<br>0.632<br>0.632                                                                                                                            | 1.851<br>D.616<br>1.024<br>1.704<br>2.536                                                                                                                                            | 0,0<br>10,4<br>10,7<br>10,3                                                                       | 0.5<br>0.00<br>1.47                                                                                               | 11.6                                                                                                                                                                                                                                                                       | 100                                                                 | 8,32                                                                             |                                                                                                                                       |                                                                                                                                  |                                                      |                                                                   |                                                                                                                                                                                                                                     |                                                                              | 0.0018                                                                         |                                                                        |                                                       | 4.4<br>3.4                                                   | 3.4                                                      | 0,304                                   | 0.178                                                 | 0,75              | 0.00                        | FRIC                                                                 |                                                                           | 612.98                                               | 812.29<br>810.93                                                                            | -<br>818.00                                            | 0,93                       |
| 3111.8 2961.<br>2081.8 2961.<br>2981.0 2781.<br>2761.8 2752.<br>2752.8 2800.0<br>2800.0 2381.<br>2298.2 2180.7<br>2298.2 2180.7<br>2298.2 2180.7<br>2023.7 1890.<br>1990.7 1924.5<br>1890.7 1624.<br>1924.5 1880.<br>1836.7 1634.<br>1473.7 1460.<br>21380.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8         150.00           1.5         30.00           1.8         150.00           2.8         28.78           0.0         152.84           1.2         235.80           8.2         52.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LAT C25<br>LAT C26<br>LAT C27<br>LAT C21<br>GBRK                                                                                                                                 | 0.409<br>0.680<br>0.632<br>0.632                                                                                                                                              | 1.024<br>1,704<br>2,536                                                                                                                                                              | 10.7<br>10.3                                                                                      | 1.47                                                                                                              |                                                                                                                                                                                                                                                                            | 100                                                                 |                                                                                  | <u> </u>                                                                                                                              | 1                                                                                                                                |                                                      | RCP                                                               | 30                                                                                                                                                                                                                                  | 36.7<br>36.7                                                                 | 0.0018                                                                         |                                                                        |                                                       |                                                              | 0,0<br>0,0                                               |                                         | 0.000                                                 | ¥,19              | 0.00                        |                                                                      |                                                                           |                                                      | 810,93                                                                                      | 010.00                                                 | <u></u>                    |
| 3111.8 2961.<br>2081.8 2961.<br>2981.0 2781.<br>2761.8 2752.<br>2752.8 2800.0<br>2800.0 2381.<br>2298.2 2180.7<br>2298.2 2180.7<br>2298.2 2180.7<br>2023.7 1890.<br>1990.7 1924.5<br>1890.7 1624.<br>1924.5 1880.<br>1836.7 1634.<br>1473.7 1460.<br>21380.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8         150.00           1.5         30.00           1.8         150.00           2.8         28.78           0.0         152.84           1.2         235.80           8.2         52.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LAT C25<br>LAT C26<br>LAT C27<br>LAT C21<br>GBRK                                                                                                                                 | 0.409<br>0.680<br>0.632<br>0.632                                                                                                                                              | 1.024<br>1,704<br>2,536                                                                                                                                                              | 10.7<br>10.3                                                                                      | 1.47                                                                                                              |                                                                                                                                                                                                                                                                            | 100                                                                 |                                                                                  | 1                                                                                                                                     |                                                                                                                                  | ļ                                                    |                                                                   |                                                                                                                                                                                                                                     |                                                                              |                                                                                |                                                                        | ļ                                                     |                                                              |                                                          |                                         |                                                       |                   | 0.00                        |                                                                      |                                                                           |                                                      |                                                                                             |                                                        | Į                          |
| 2981.8 2831.<br>2931.0 2781.1 2752.<br>2761.8 2752. 2800.<br>2800.0 2381.2 2982.<br>2301.1 2298.2 2180.<br>2180.7 2023.<br>1890.7 1024.<br>1920.7 1898.<br>1890.7 1898.<br>1990.7 1898.<br>1890.7 1898.<br>1890.7 1898.<br>1890.7 1898.<br>1890.7 1898.<br>1890.7 1898.<br>1890.7 1899.<br>1890.7 1899.<br>1890.7 1899.<br>1890.7 1899.<br>1890.7 1899.<br>1890.7 1899.<br>1890.7 1899.<br>1890.7 1899.<br>1890.7 1899.<br>1890.7 1890.7 1899.<br>1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890.7 1890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5         30.00           1.8         150.00           2.8         28.78           0.0         152.84           1.2         218.80           8.2         52.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LAT C25<br>LAT C26<br>LAT C27<br>LAT C21<br>GBRK                                                                                                                                 | 0.409<br>0.680<br>0.632<br>0.632                                                                                                                                              | 1.024<br>1,704<br>2,536                                                                                                                                                              | 10.7<br>10.3                                                                                      | 1.47                                                                                                              |                                                                                                                                                                                                                                                                            | 100                                                                 |                                                                                  |                                                                                                                                       |                                                                                                                                  |                                                      |                                                                   |                                                                                                                                                                                                                                     |                                                                              |                                                                                |                                                                        |                                                       |                                                              |                                                          | ĺ                                       |                                                       |                   |                             |                                                                      |                                                                           |                                                      |                                                                                             |                                                        | l                          |
| 2331.0 2781.<br>2761.8 2752.<br>2752.8 2860.<br>2600.0 2381.<br>2281.2 2282.<br>2180.7 2023.<br>2180.7 2023.<br>2023.7 1980.<br>1890.7 1924.<br>1890.7 1924.<br>1990.7 1990.7 1990.<br>1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7 1990.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8         150.00           2.8         28.78           0.0         152.84           1.2         218.80           8.2         62.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LAT C28<br>LAT C22<br>LAT C21<br>GBRK                                                                                                                                            | 0.680<br>0.832<br>0.632                                                                                                                                                       | 1,704<br>2,536                                                                                                                                                                       | 10,3                                                                                              |                                                                                                                   | 440                                                                                                                                                                                                                                                                        |                                                                     | 8.64                                                                             | 5.3                                                                                                                                   | 0.0080                                                                                                                           | 1                                                    | RCP                                                               | 24                                                                                                                                                                                                                                  | 20.2                                                                         | 0.0006                                                                         |                                                                        |                                                       |                                                              | 2.7                                                      | 0.045                                   | 0.112                                                 |                   |                             |                                                                      |                                                                           |                                                      | 642.29                                                                                      | 048,00                                                 | 2.60                       |
| 2761.8 2752.<br>2762.8 29600.<br>2600.0 2381.<br>2296.1 2298.<br>2298.2 2180.<br>2190.7 2023.<br>1990.7 1024.<br>1990.7 1024.<br>1990.7 1024.<br>1990.7 1024.<br>1930.7 1038.<br>1636.7 1473.<br>1473.7 1460.<br>1460.2 1380.<br>1280.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8 28.78<br>0.0 152.84<br>1.2 238.80<br>8.2 52.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LAT C22<br>LAT C21<br>GBRK                                                                                                                                                       | 0.832                                                                                                                                                                         | 2.536                                                                                                                                                                                |                                                                                                   |                                                                                                                   | 12.1                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 8,4                                                                                                                                   | 0.0080                                                                                                                           | 1                                                    | RCP                                                               | 24                                                                                                                                                                                                                                  | 20.2                                                                         |                                                                                |                                                                        | 645.19                                                |                                                              | 4,4                                                      | 0.112                                   |                                                       |                   |                             |                                                                      |                                                                           |                                                      | 642.05                                                                                      | 647.00                                                 | 1.77                       |
| 2752.8 2800.<br>2800.0 2381.<br>2361.1 2298.<br>2289.2 2180.7 2023.<br>2023.7 1990.<br>1990.7 1924.<br>1826.7 1638.<br>1836.7 1473.<br>1473.7 1480.<br>1380.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0 152 84<br>1.2 238.80<br>8.2 62 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LAT C21<br>GBRK                                                                                                                                                                  | 0.632                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                   | 0.58                                                                                                              | 12.1                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 13.9                                                                                                                                  | 0.0080                                                                                                                           | 3                                                    | RCP<br>RCP                                                        | 24                                                                                                                                                                                                                                  | 20.2                                                                         | 0.0038                                                                         |                                                                        | 644.40                                                |                                                              | 8.5                                                      | 0.308                                   | 1.026                                                 |                   | 0,43                        | FRIC                                                                 |                                                                           | 642.05                                               |                                                                                             | 848,50<br>646,00                                       | 1.53                       |
| 2361.1 2298.<br>2298.2 2180.<br>2180.7 2023.<br>2023.7 1990.<br>1990.7 1924.<br>1924.5 1880.<br>1869.7 1638.<br>1636.7 1473.<br>1473.7 1460.<br>1460.2 1380.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.2 82.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | 0.000                                                                                                                                                                         |                                                                                                                                                                                      | 10,3                                                                                              | 0.07                                                                                                              | 12.7                                                                                                                                                                                                                                                                       | 100                                                                 | 8.05                                                                             | 25.5                                                                                                                                  | 0,0080                                                                                                                           | 1                                                    | RCP                                                               | 24                                                                                                                                                                                                                                  | 20.2                                                                         | 0.0127                                                                         | 643.20                                                                 | 641.26                                                | 8.1                                                          | 8.1                                                      | 1.026                                   |                                                       |                   |                             |                                                                      |                                                                           |                                                      | 639,40                                                                                      | 645.00                                                 | 1,80                       |
| 2298.2 2180.<br>2180.7 2023.<br>2023.7 1990.<br>1990.7 1924.<br>1924.5 1880.<br>1869.7 1638.<br>1636.7 1473.<br>1473.7 1460.<br>1460.2 1380.<br>1380.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0.839                                                                                                                                                                         | 3.188                                                                                                                                                                                | 10.3                                                                                              | 0.31                                                                                                              | 13.1<br>13.6                                                                                                                                                                                                                                                               | 100                                                                 |                                                                                  | 25.3                                                                                                                                  | 0,0132                                                                                                                           | 1                                                    | RCP                                                               | 24                                                                                                                                                                                                                                  | 26.0<br>51.2                                                                 | 0.0126                                                                         |                                                                        |                                                       |                                                              | 6.6                                                      | 1.011                                   |                                                       |                   | 0.00                        |                                                                      |                                                                           | 630,40                                               |                                                                                             | 642.50                                                 |                            |
| 2180.7 2023.<br>2023.7 1990.<br>1990.7 1924.<br>1924.5 1880.<br>1830.7 1838.<br>1636.7 1473.<br>1473.7 1480.<br>1460.2 1380.<br>1380.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7 117.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  | 0.621                                                                                                                                                                         |                                                                                                                                                                                      | 10,3                                                                                              | 0.49                                                                                                              | 13.5                                                                                                                                                                                                                                                                       |                                                                     | 8,10                                                                             | 32.5                                                                                                                                  | 0.0156                                                                                                                           | 1                                                    | RCP                                                               | 30                                                                                                                                                                                                                                  | 51.2                                                                         | 0.0063                                                                         |                                                                        |                                                       |                                                              | 9.1                                                      | 0.679                                   |                                                       |                   | 0.41                        | FRIC                                                                 |                                                                           |                                                      | 634,78<br>632,93                                                                            |                                                        | 5.36                       |
| 1990.7 1924.<br>1924.5 1880.<br>1889.7 1838.<br>1636.7 1473.<br>1473.7 1460.<br>1460.2 1380.<br>1380.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.7 157.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LAT C17                                                                                                                                                                          | 0.813                                                                                                                                                                         | 5.441                                                                                                                                                                                | 10.4                                                                                              | 0.26                                                                                                              | 14.0                                                                                                                                                                                                                                                                       | 100                                                                 | 8.18                                                                             | 44,5                                                                                                                                  | 0.0158                                                                                                                           | 1 1                                                  | RCP                                                               | 30                                                                                                                                                                                                                                  | 51.2                                                                         | 0.0118                                                                         | 634.75                                                                 | 631.82                                                | 9.1                                                          | 6.3                                                      | 1.277                                   | 0.622                                                 | 0.75              | -0.34                       | PROP                                                                 | 634.75                                                                    | 632.83                                               | 630.48                                                                                      | 640,50                                                 | 5.75                       |
| 1924,5 1860,<br>1860,7 1638,<br>1636,7 1473,<br>1473,7 1480,<br>1460,2 1380,8 1283,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0,338                                                                                                                                                                         |                                                                                                                                                                                      | 10,5                                                                                              | 0.29                                                                                                              | 14.3<br>14.3                                                                                                                                                                                                                                                               | 100                                                                 | 7.74                                                                             | 44.7                                                                                                                                  | 0.0100                                                                                                                           | 1                                                    | RCP                                                               | 36                                                                                                                                                                                                                                  | 68.7<br>66.7                                                                 | 0.0045                                                                         |                                                                        |                                                       |                                                              | 7.2                                                      | 0.822                                   | 0.614                                                 |                   |                             |                                                                      |                                                                           |                                                      | 629,65<br>628,99                                                                            | 636.00<br>637.00                                       | 3,84                       |
| 1636.7 1473.<br>1473.7 1460.<br>1460.2 1360.<br>1380.8 1263.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0.315                                                                                                                                                                         |                                                                                                                                                                                      | 11.0                                                                                              | 0.15                                                                                                              | 14.5                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 53.4                                                                                                                                  | 0.0100                                                                                                                           |                                                      | RCP                                                               | 38                                                                                                                                                                                                                                  | 66.7                                                                         |                                                                                |                                                                        | 629.69                                                |                                                              | 6.0                                                      | 0.887                                   | 0.550                                                 |                   |                             |                                                                      |                                                                           |                                                      | 628.35                                                                                      |                                                        | 5.00                       |
| 1473.7 1460.<br>1460.2 1380.<br>1380.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0.558                                                                                                                                                                         | 7.505                                                                                                                                                                                | 10.5                                                                                              | 0.14                                                                                                              | 14.6                                                                                                                                                                                                                                                                       | 100                                                                 | 7.63                                                                             | 57.3                                                                                                                                  | 0,0100                                                                                                                           | 1                                                    | RCP                                                               | 42                                                                                                                                                                                                                                  | 100,8                                                                        |                                                                                |                                                                        | 627,83                                                |                                                              | 0.6                                                      | 0.550                                   |                                                       |                   |                             | PROP                                                                 |                                                                           | 627,85                                               |                                                                                             | 835.00                                                 | 5.19                       |
| 1460.2 1380.<br>1380.8 1283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0,905                                                                                                                                                                         | 8,410                                                                                                                                                                                | 10,3                                                                                              | 0.63                                                                                                              | 15.3                                                                                                                                                                                                                                                                       | 100                                                                 | 7.51                                                                             | 67.0                                                                                                                                  | 0.0100                                                                                                                           | $\frac{1}{1}$                                        | RCP                                                               | 42                                                                                                                                                                                                                                  | 100.8                                                                        |                                                                                |                                                                        | 825,48                                                |                                                              | 5.3                                                      | 0.668                                   |                                                       |                   |                             |                                                                      |                                                                           | 625,61                                               | 623.98                                                                                      | 833.00<br>630.50                                       | 4.98                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0.885                                                                                                                                                                         | 9.824                                                                                                                                                                                |                                                                                                   | 0.04                                                                                                              | 15.7                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 73.4                                                                                                                                  | 0.0125                                                                                                                           |                                                      | RCP                                                               | 48                                                                                                                                                                                                                                  | 160.8                                                                        |                                                                                |                                                                        | 824.60                                                |                                                              | 6,6                                                      | 0.530                                   |                                                       |                   | 0.28                        |                                                                      |                                                                           |                                                      | 622.32                                                                                      |                                                        | 5.89                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 1.335                                                                                                                                                                         | 11.159                                                                                                                                                                               | 10.6                                                                                              |                                                                                                                   | 15,8                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 83.2                                                                                                                                  | 0,0125                                                                                                                           | 1                                                    | RCP                                                               | 48                                                                                                                                                                                                                                  | 160.6                                                                        |                                                                                |                                                                        | 823.09                                                |                                                              | 6,9                                                      | 0.031                                   |                                                       |                   |                             | PROP                                                                 |                                                                           |                                                      | 620.86                                                                                      | 631.28                                                 | 5.05                       |
| 1263.7 1138.<br>1136.2 1086.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0.592                                                                                                                                                                         | 11.751<br>12.644                                                                                                                                                                     | 10.3                                                                                              | 0.29                                                                                                              | 16,2<br>16,5                                                                                                                                                                                                                                                               | 100                                                                 | 7.42                                                                             | 87.2<br>93.3                                                                                                                          | 0.0125                                                                                                                           | 1                                                    | RCP                                                               | 48                                                                                                                                                                                                                                  | 160,6                                                                        | 0.0037                                                                         |                                                                        | 621.80                                                |                                                              | 7.4                                                      | 0.748                                   |                                                       |                   | 0.29                        | PROP                                                                 |                                                                           |                                                      | 819.26<br>618.64                                                                            | 629.00                                                 | 8,14<br>7,00               |
| 1088.2 988.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 1.942                                                                                                                                                                         | 14.580                                                                                                                                                                               | 10.5                                                                                              | 0.11                                                                                                              | 16.7                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 107.4                                                                                                                                 | 0.0125                                                                                                                           | 1                                                    | RCP                                                               | 48                                                                                                                                                                                                                                  | 160,6                                                                        |                                                                                |                                                                        | 619.69                                                |                                                              | 8.9                                                      | 1,133                                   |                                                       |                   | 0.37                        | PROP                                                                 |                                                                           |                                                      | 617,39                                                                                      |                                                        | 5.92                       |
| 986.2 849.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 1.438                                                                                                                                                                         |                                                                                                                                                                                      | 10.2                                                                                              | 0,20                                                                                                              | 16.8                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 103.2                                                                                                                                 | 0.0125                                                                                                                           | 1                                                    | RCP                                                               | 48                                                                                                                                                                                                                                  | 160,6                                                                        |                                                                                |                                                                        | 620.03                                                |                                                              | 8.9                                                      | 1.048                                   |                                                       |                   | 0.44                        |                                                                      |                                                                           |                                                      | 615,68                                                                                      | 827,00                                                 | 6,27                       |
| 849.7 830.0<br>830.0 695.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 1,245                                                                                                                                                                         | 15.328<br>15.328                                                                                                                                                                     | 10.2                                                                                              | 0.28                                                                                                              | 17.1                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 111.6                                                                                                                                 | 0.0125                                                                                                                           | 1 2                                                  | RCP                                                               | 48                                                                                                                                                                                                                                  | 160.6                                                                        |                                                                                |                                                                        | 619,19                                                |                                                              | <u>5.8</u><br>8.0                                        | 1.224                                   |                                                       |                   | 0.40                        |                                                                      |                                                                           | 615.58                                               | 615.43                                                                                      | 625.00                                                 | 5.69                       |
| 695.0 277.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0.603                                                                                                                                                                         | 15.931                                                                                                                                                                               |                                                                                                   |                                                                                                                   | 17.6                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 114,7                                                                                                                                 | 0.0050                                                                                                                           | 2                                                    | RCP                                                               | 42                                                                                                                                                                                                                                  | 142.3                                                                        |                                                                                |                                                                        | 617.53                                                |                                                              | 8.0                                                      | 0.552                                   |                                                       |                   | 0.14                        |                                                                      |                                                                           |                                                      | 612.54                                                                                      | 620,00                                                 | 1.12                       |
| 277.6 266.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0.450                                                                                                                                                                         |                                                                                                                                                                                      | 10.6                                                                                              |                                                                                                                   | 18.7                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 114.6                                                                                                                                 | 0,0060                                                                                                                           | 2                                                    | RCP                                                               | 42                                                                                                                                                                                                                                  | 142.3                                                                        | 0.0032                                                                         |                                                                        |                                                       | 6,0                                                          | 8.0                                                      | 0.551                                   | 0.693                                                 | 0.7               | S 0.15                      | FRIC                                                                 |                                                                           |                                                      | 612.48                                                                                      | 618.50                                                 | 1.11                       |
| 266.8 139.0 139.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0,189                                                                                                                                                                         | 16.570<br>16.570                                                                                                                                                                     |                                                                                                   | 0.03                                                                                                              | 18.8<br>19.1                                                                                                                                                                                                                                                               | 100                                                                 | 7.00                                                                             | 115.0                                                                                                                                 | 0.0050                                                                                                                           | 2                                                    | CMP.PLN                                                           | 42<br>48                                                                                                                                                                                                                            | 142.3<br>147.8                                                               | 0.0033                                                                         |                                                                        | 618.78                                                | 6,0                                                          | 4.6                                                      | 0.583                                   |                                                       |                   | 0.00                        |                                                                      |                                                                           | 611.85                                               | 811.85                                                                                      | 816.50                                                 | 1.30                       |
| 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0.000                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                   |                                                                                                                   | 19.6                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 113,7                                                                                                                                 | 0.0090                                                                                                                           | 2                                                    | CMP.PLN                                                           |                                                                                                                                                                                                                                     | 147.8                                                                        |                                                                                |                                                                        | 018,12                                                |                                                              | 0.0                                                      | 0.318                                   |                                                       |                   | 0.00                        |                                                                      |                                                                           |                                                      | 610.60                                                                                      | -                                                      |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  | <b> </b>                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                            |                                                                     |                                                                                  | 1                                                                                                                                     | <u> </u>                                                                                                                         |                                                      | 1                                                                 |                                                                                                                                                                                                                                     |                                                                              | <u> </u>                                                                       | [<br>]                                                                 | 1                                                     | 1                                                            |                                                          |                                         | +                                                     |                   | +                           |                                                                      | <u>1</u>                                                                  | +                                                    |                                                                                             | <u> </u>                                               | +                          |
| LINE<br>772 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | L 1.616                                                                                                                                                                       | 1.016                                                                                                                                                                                |                                                                                                   | 0.0                                                                                                               | 40.0                                                                                                                                                                                                                                                                       |                                                                     | 8.00                                                                             | 8.8                                                                                                                                   | 0.005                                                                                                                            | <u> </u>                                             | RCP                                                               | 30                                                                                                                                                                                                                                  | 29.0                                                                         | 0.0005                                                                         |                                                                        | 040                                                   | 1.8                                                          | 4.5                                                      | 0.050                                   | 0.142                                                 | 0.7               | 1 0.07                      | FRIC                                                                 | 010                                                                       | 1817 10                                              | 640.73                                                                                      | 00050                                                  | 1,75                       |
| 702 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 1,018                                                                                                                                                                         | 2.634                                                                                                                                                                                | 10.3<br>11.8                                                                                      | 0.0<br>0.8                                                                                                        | 10,3                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 22.0                                                                                                                                  | 0,005                                                                                                                            |                                                      |                                                                   | 30                                                                                                                                                                                                                                  | 29.0                                                                         | 0.0029                                                                         |                                                                        |                                                       |                                                              | 3,0                                                      | 0,312                                   |                                                       |                   | 5 -0.10                     |                                                                      |                                                                           |                                                      | 615.77                                                                                      |                                                        |                            |
| 502 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LAT D2                                                                                                                                                                           | 0,560                                                                                                                                                                         | 3.194                                                                                                                                                                                | 1D.3                                                                                              | 0,7                                                                                                               | 12.3                                                                                                                                                                                                                                                                       | 100                                                                 | 8,14                                                                             | 26.0                                                                                                                                  | 0.005                                                                                                                            | i                                                    | RCP                                                               | 40                                                                                                                                                                                                                                  | 62,5                                                                         | 0.0009                                                                         | 617.45                                                                 | 6 617,28                                              | 3.0                                                          | 3.3                                                      | 0.138                                   | 0.173                                                 | 0.7               | 5 0.07                      | FRIC                                                                 | 917.45                                                                    | 614.93                                               | 613.03                                                                                      | 620.50                                                 | 3.05                       |
| 302 292<br>292 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  | 0.408                                                                                                                                                                         | 3.602                                                                                                                                                                                | 1D.4.                                                                                             |                                                                                                                   | 13,5                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 29.1                                                                                                                                  | 0,005                                                                                                                            | 1                                                    | RCP                                                               | 40                                                                                                                                                                                                                                  | 62,5                                                                         |                                                                                |                                                                        | 617.20                                                |                                                              | 3.7                                                      | 0.173                                   |                                                       |                   | 5 0.08<br>5 0.08            |                                                                      | 617.21                                                                    |                                                      | 613.68                                                                                      |                                                        |                            |
| 205 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | 0.000                                                                                                                                                                         | 3.978                                                                                                                                                                                | 10,4                                                                                              | 0,4                                                                                                               | 13.5                                                                                                                                                                                                                                                                       | 100                                                                 |                                                                                  | 32.2                                                                                                                                  | 0.023                                                                                                                            | 1                                                    | RCP                                                               | 40                                                                                                                                                                                                                                  | 133,4                                                                        |                                                                                |                                                                        | 616.65                                                |                                                              | 3.6                                                      | 0.212                                   |                                                       |                   | 5 0.04                      |                                                                      |                                                                           |                                                      | 812.56                                                                                      |                                                        | 1,60                       |
| 160 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0,000                                                                                                                                                                         | 3.978                                                                                                                                                                                | ·                                                                                                 | 0,2                                                                                                               | 14.1                                                                                                                                                                                                                                                                       | 100                                                                 | 7.80                                                                             | 31.0                                                                                                                                  | 0.005                                                                                                                            | 1                                                    | CHIP PLN                                                          | 40                                                                                                                                                                                                                                  | 33.0                                                                         | 0.0042                                                                         | 618.8                                                                  | 616.16                                                | 3.6                                                          | 3.5                                                      | 0.199                                   | D.165                                                 | 0.7               | 5 0.04                      | FRIC                                                                 | 615.86                                                                    | 612.56                                               | 611.73                                                                                      |                                                        | <u> </u>                   |
| 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.00<br>166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0,000                                                                                                                                                                         | 3.978                                                                                                                                                                                | 0.0                                                                                               | 8.0                                                                                                               | 14.8                                                                                                                                                                                                                                                                       | 100                                                                 | 7.58                                                                             | 30.1                                                                                                                                  | 0.005                                                                                                                            | 1                                                    | CMP.PLN                                                           | 40                                                                                                                                                                                                                                  | 33.6                                                                         | 0.0040                                                                         |                                                                        |                                                       |                                                              |                                                          |                                         |                                                       | 1 1 1 24          | 5 -0.14                     | FRIC                                                                 | 610.12                                                                    | 011.73                                               | 611.73                                                                                      |                                                        |                            |

1 in two locations the Town of Addison Drainage Manual shows subtracting the two velocity heads and multiplying the difference by the loss coefficient. However on Figure 5-4, the standard way of multiplying the loss coefficient and the upstream velocity head and the upstream velocity head and the upstream velocity head and the upstream velocity head and the upstream velocity head and the upstream velocity head and the upstream velocity head and the upstream velocity head and the upstream velocity head and the upstream velocity head and the upstream velocity head in these calculations.

2 This column has been included to help identity pipes flowing in partial flow. If the pipe is flowing under partial flow, the spreadsheet looks up a ratio of design flow to determine the ratio of design depth to full depth. This depth ratio is then used to determine the depth of the design flow in the pipe. If this depth is least frem the computed HGL using the fifteen slope, then the depth based on the proportional flows is used to set the HGL at their point. The information used to determine the proportional flow can be found in numerous sources, this spreadsheet consulted Concrete Pipe Design Manual, Figure 20 and Open Channal Hydraulics by Chow, Figure 8-5.

--- '

## APPENDIX G

HY-8 ANALYSIS EXISTING 9' X 5' BOX CULVERT (WITH AND WITHOUT OVERTOPPING)

| CURRENT DAI<br>CURRENT TIN                       |                                        |                     |                  |                      |               |          | LE DATE:<br>LE NAME: | 12-06-2001<br>MIDWAY       |
|--------------------------------------------------|----------------------------------------|---------------------|------------------|----------------------|---------------|----------|----------------------|----------------------------|
| *****                                            | ********                               | *****               | FHWA CU<br>HY-8, | ULVERT AN<br>VERSION | ALYSIS<br>6.1 | ****     | *******              | ***********                |
| C                                                | SITE DAT                               |                     |                  |                      |               |          | AL, INLE             |                            |
| V ELEV<br>NO. (ft)<br>1 611.6<br>2 3<br>3 4<br>5 | T OUTLE<br>7. ELEV<br>(ft)<br>50 609.5 | . LENGTH<br>(ft)    | i sha<br>Mat     | PE<br>'ERIAL         | (ft)          | (ft)     |                      |                            |
| 6  <br>********                                  | *******                                | *****               | ******           | *****                | ******        | *****    | ******               | *****                      |
| ***********<br>SUMMARY OF                        |                                        |                     |                  |                      |               |          |                      | **********<br>E: 12-06-20( |
| ELEV (ft)                                        | TOTAL                                  | 1                   | 2                | 3                    | 4             | 5        | 6                    | ROADWAY I                  |
| 611.60                                           | 0.0                                    | 0.0                 | 0.0              | 0.0                  | 0.0           |          |                      | 0.00                       |
|                                                  | 133.4                                  |                     | 0.0              | 0.0                  | 0.0           | 0.0      |                      |                            |
| 616.26                                           | 266.8                                  | 266.8               | 0.0              | 0.0                  | 0.0           | 0.0      |                      | 0.00 1                     |
| 618.05                                           | 400.2                                  |                     | 0.0              | 0.0                  | 0.0           | 0.0      |                      | 0.00                       |
| 619.71                                           | 533.6                                  | 508.8               | 0.0              | 0.0                  | 0.0           | 0.0      | 0.0                  | 21.89 8                    |
| 619.98                                           | 667.0                                  | 524.7               | 0.0              | 0.0                  | 0.0           | 0.0      | 0.0                  | 138.36 4                   |
| 620.03                                           | 700.0                                  | 527.2               | 0.0              | 0.0                  | 0.0           | 0.0      | 0.0                  | 168.53 3                   |
| 620.33                                           | 933.8                                  | 545.4               | 0.0              | 0.0                  | 0.0           | 0.0      | 0.0                  | 380.12 3                   |
| 620.49                                           | 1067.2                                 |                     |                  |                      |               | 0.0      |                      | 507.79 3                   |
| 620.63                                           | 1200.6                                 | 562.2               | 0.0              | 0.0                  | 0.0           | 0.0      | 0.0                  | 634.52 3                   |
| 620.79                                           | 1334.0                                 | 533.6               | 0.0              | 0.0                  | 0.0           | 0.0      | 0.0                  | 788.60 3                   |
| 619.60                                           | 502.0                                  | 502.0               | 0.0              | 0.0                  | 0.0           | 0.0      | 0.0                  | OVERTOPPING                |
| ************<br>*************************        | *****                                  | *******             | ******           | ******               |               | ******   | ******               | 2: 12-06-200               |
| HEA                                              | D                                      | HEAD                |                  | TOTAL                |               | FLOW     |                      | * FLOW                     |
| ELEV                                             | (ft)                                   | ERROR (             | ft)              | FLOW (e              | cfs)          | ERROR    | (cfs)                | ERROR                      |
| 611.                                             | 60                                     | 0.00                | 0                | 0.0                  | D             | 0.00     | )                    | 0.00                       |
| 614.                                             | 42                                     | 0.00                | 0                | 133.40               | 0             | 0.00     | )                    | 0.00                       |
| 616.                                             | 26                                     | 0.00                | 0                | 266.80               | 0             | 0.00     | )                    | 0.00                       |
| 618.                                             | 05                                     | 0.00                | 0                | 400.20               |               | 0.00     | )                    | 0.00                       |
| 619.                                             |                                        | -0.00               |                  | 533.60               | -             | 2.88     |                      | 0.54                       |
| 619.                                             |                                        | -0.00               |                  | 667.00               |               | 3.95     |                      | 0.59                       |
| 620.                                             |                                        | -0.00               |                  | 700.00               |               | 4.27     |                      | 0.61                       |
| 620.                                             |                                        | -0.00               |                  | 933.80               |               | 8.26     |                      | 0.88                       |
| 620.                                             |                                        | -0.00               |                  | 1067.20              | -             | 5.15     |                      | 0.48                       |
| 620.                                             |                                        | -0.00               |                  | 1200.60              |               | 3.85     |                      | 0.32                       |
| 620.                                             |                                        | -0.00               |                  | 1334.00              |               | 11.80    |                      | 0.88                       |
| **********                                       |                                        |                     | ******           | ******               |               |          |                      | *********                  |
| <1> TOLER                                        |                                        | = 0.010<br>******** |                  |                      | <2            | :> TOLER | CANCE (*)            | = 1.000                    |

| CURRENT<br>CURRENT |         | -        |          |        |         |           |        | LE DATE:<br>LE NAME: | 12-06-20<br>MIDWAY                     | 01        |
|--------------------|---------|----------|----------|--------|---------|-----------|--------|----------------------|----------------------------------------|-----------|
|                    |         |          |          |        |         |           |        |                      | ******                                 |           |
|                    |         |          |          |        |         | NALYSIS   |        |                      | ********                               |           |
|                    |         |          |          |        |         |           |        |                      | ********                               |           |
| I C I              |         | re data  | *******  | 1      |         | RT SHAPE, |        |                      |                                        |           |
| U                  |         | LE DAIA  |          |        |         | (I SHAFE; |        |                      | ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |           |
|                    | INLET   | OTTTI PT | CULVER   | erri B | ARRELS  |           |        |                      |                                        |           |
|                    |         |          | LENGTH   |        | HAPE    | SPAN      | RISE   | MANNING              | INLET                                  |           |
|                    |         |          | (ft)     |        | ATERIAL |           | (ft)   |                      | TYPE                                   |           |
|                    |         |          | 165.0    |        |         |           |        | .013                 |                                        | ONAL      |
| 2                  |         | ***      |          |        |         |           |        |                      |                                        |           |
| 3                  |         |          |          |        |         |           |        |                      |                                        |           |
| 4                  |         |          |          | i      |         |           |        |                      |                                        | i         |
| 5                  |         |          |          | 1      |         |           |        |                      |                                        | 1         |
| 6                  |         |          |          |        |         |           |        |                      |                                        | i         |
| , ,<br>*******     | ******  | ******   | ******   | *****  | ******  | *****     | ****** | ******               | ******                                 | ****      |
|                    |         |          |          |        |         |           |        |                      |                                        |           |
| ******             | ******* | ******   | *****    | ****   | ******* | ******    | ****** | *****                | *******                                | * * * * * |
| SUMMARY            | OF CULV | ERT FLO  | DWS (cfs | )      | FILE    | : MIDWAY  |        | DATE                 | : 12-06-2                              | 2001      |
|                    |         |          |          |        |         |           |        |                      |                                        |           |
| ELEV (f            | t) TC   | TAL      | 1        | 2      | 3       | 4         | 5      | 6                    | ROADWAY                                | ITR       |
| 611.6              | 50      | 0.0      | 0.0      | 0.0    | 0.0     | /0.0      | 0.0    | 0.0                  | 0.00                                   | 0         |
| 614.4              | 2 13    | 3.4      |          | 0.0    | 0.0     | 0.0       | 0.0    | 0.0                  | 0.00                                   | 0         |
| 616.2              | 6 26    | 6.8      | 0.0      | 0.0    | 0.0     | 0.0       | 0.0    | 0.0                  | 0.00                                   | 0         |
| 618.0              |         | 0.2      | 0.0      | 0.0    |         | 0.0       | 0.0    |                      |                                        |           |
| 620.1              |         | 3.6      | 0.0      | 0.0    | 0.0     | 0.0       | 0.0    |                      |                                        | 0         |
| 622.6              | 66 66   | 7.0      | 0.0      | 0.0    | 0.0     | 0.0       | 0.0    |                      |                                        | 0         |
| 623.3              | 7 70    | 0.0      | 0.0      | 0.0    |         | 0.0       | 0.0    |                      | 0.00                                   | 0         |
| 629.7              | 4 93    | 3.8      | 0.0      | 0.0    | 0.0     | 0.0       | 0.0    | 0.0                  | 0.00                                   | 0         |
| 634.5              |         | 7.2      |          | 0.0    | 0.0     |           | 0.0    |                      | 0.00                                   | 0         |
|                    | 6 120   |          |          | 0.0    |         |           | 0.0    |                      |                                        | 0         |
| 646.0              | 3 133   | 4.0      | 0.0      | 0.0    |         |           | 0.0    |                      | 0.00                                   | 0         |
| 0.0                | 0       | 0.0      | 0.0      | 0.0    | 0.0     | 0.0       | 0.0    | 0.0                  | OVERTOPPI                              | ING       |
| *****              | ******  | ******   | *******  | *****  | ******* | ******    | *****  | *****                | *******                                | *****     |
| SUMMAR             | Y OF IT | 'ERATIVE | SOLUTI   | on eri | RORS FI | LE: MIDW  | AY     | DATE                 | : 12-06-2                              | 2001      |
|                    | HEAD    |          | HEAD     |        | TOTA    | ц         | FLOW   |                      | % FLOW                                 |           |
|                    | LEV (ft | )        | ERROR (  | ft)    | FLOW    |           | ERROR  | (cfs)                | ERROR                                  |           |
|                    | 11.60   |          | 0.00     |        |         | 00        | 0.00   |                      | 0.00                                   |           |
|                    | 14.42   |          | 0.00     |        | 133.    |           | 0.00   |                      | 0.00                                   |           |
|                    | 16.26   |          | 0.00     |        | 266.    |           | 0.00   |                      | 0.00                                   |           |
| 6                  | 18.05   |          | 0.00     | 0      | 400.    |           | 0.00   |                      | 0.00                                   |           |
|                    | 20.13   |          | 0.00     | 0      | 533.    | 60        | 0.00   |                      | 0.00                                   |           |
|                    | 622.66  |          | 0.000    |        | 667.    |           | 0.00   |                      | 0.00                                   |           |
| 6                  | 623.37  |          | 0.000    |        | 700.    | 00        | 0.00   | )                    | 0.00                                   |           |
| 629.74             |         |          | 0.000    |        | 933.    | 80        | 0.00   | )                    | 0.00                                   |           |
| 634.53             |         |          | 0.000    |        | 1067.   | 20        | 0.00   | 0.00                 |                                        |           |
| 639.96             |         |          | 0.000    |        | 1200.   | 60        | 0.00   | 0.00                 |                                        |           |
|                    | 46.03   |          | 0.00     |        | 1334.   |           | 0.00   |                      | 0.00                                   |           |
| *****              | ******  | ******   | ******   | *****  | ******  | ******    | ****** | ******               | *******                                | ****      |
|                    | LERANCE |          |          |        |         |           |        | ANCE (%)             |                                        |           |
| ******             | ******  | *****    | ******   | *****  | ******* | ******    | ****** | ******               | ******                                 | ****      |

CURRENT DATE: 12-06-2001 FILE DATE: 12-06-2001 CURRENT TIME: 13:43:30 FILE NAME: MIDWAY \*\*\*\* PERFORMANCE CURVE FOR CULVERT 1 - 1 ( 9.00 (ft) BY 5.00 (ft)) RCB \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) (ft) (ft) (ft) (fps) (fps)\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 0.00 611.60 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 2.83 2.83 1-S2n 1.19 1.90 1.24 1.69 11.95 5.91 133.40 614.43 266.80 616.26 4.66 4.66 1-S2n 1.90 3.02 2.06 2.46 14.41 7.26 400.20 618.05 6.45 6.45 5-S2n 2.52 3.95 2.79 3.05 15.92 8.15 533.60 620.13 8.53 8.53 5-S2n 3.09 4.79 3.47 3.54 17.09 8.82 667.00 622.66 11.06 8.50 6-S2n 3.63 5.00 4.09 3.97 18.12 9.37 700.00 623.37 11.77 9.06 6-S2n 3.76 5.00 4.20 4.07 18.52 9.50 629.74 18.14 13.84 6-S2n 5.00 5.00 4.90 4.70 21.17 10.26 933.80 5.01 24.20 10.63 1067.20 634.53 22.93 17.18 4-S2n 5.00 5.00 4.90 1200.60 639.96 28.36 21.26 4-S2n 5.00 5.00 4.90 5.31 27.22 10.97 1334.00 646.03 34.43 25.76 4-S2n 5.00 5.00 4.90 5.59 30.25 11.27 El. inlet face invert 611.60 ft El. outlet invert 609.54 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft INLET STATION 165.00 ft INLET ELEVATION 611.60 ft OUTLET STATION 0.00 ft OUTLET ELEVATION 609.54 ft NUMBER OF BARRELS 1 SLOPE (V/H) 0.0125 CULVERT LENGTH ALONG SLOPE 165.01 ft BARREL SHAPE BOX BARREL SPAN 9.00 ft BARREL RISE 5.00 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL 1:1 BEVEL (45 DEG. FLARE) INLET DEPRESSION NONE \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| CURRENT DATE: 12-06-2001<br>CURRENT TIME: 13:43:30               | FILE DATE: 12-06-2001<br>FILE NAME: MIDWAY |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| *****                                                            | ******                                     |  |  |  |  |  |  |  |  |  |  |  |
| **************************************                           |                                            |  |  |  |  |  |  |  |  |  |  |  |
| *********                                                        | *****                                      |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |                                            |  |  |  |  |  |  |  |  |  |  |  |
| ******* REGULAR CHANNEL CROSS SECTION *******                    | *****                                      |  |  |  |  |  |  |  |  |  |  |  |
| BOTTOM WIDTH                                                     | 10.00 ft                                   |  |  |  |  |  |  |  |  |  |  |  |
| SIDE SLOPE H/V (X:1)                                             | 2.0                                        |  |  |  |  |  |  |  |  |  |  |  |
| CHANNEL SLOPE V/H (ft/ft)                                        | 0.010                                      |  |  |  |  |  |  |  |  |  |  |  |
| MANNING'S n (.01-0.1)                                            | 0.030                                      |  |  |  |  |  |  |  |  |  |  |  |
| CHANNEL INVERT ELEVATION                                         | 609.54 ft                                  |  |  |  |  |  |  |  |  |  |  |  |
| CULVERT NO.1 OUTLET INVERT ELEVATION                             | 609.54 ft                                  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |                                            |  |  |  |  |  |  |  |  |  |  |  |
| ******* UNIFORM FLOW RATING CURVE FOR DOWNSTRE                   | AM CHANNEL                                 |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |                                            |  |  |  |  |  |  |  |  |  |  |  |
| FLOW W.S.E. FROUDE DEPTH VEL                                     |                                            |  |  |  |  |  |  |  |  |  |  |  |
| (cfs) (ft) NUMBER (ft) (f/s)                                     |                                            |  |  |  |  |  |  |  |  |  |  |  |
| 0.00 609.54 0.000 0.00 0.00<br>133.40 611.23 0.803 1.69 5.93     |                                            |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |                                            |  |  |  |  |  |  |  |  |  |  |  |
| 266.80 612.00 0.816 2.46 7.20                                    |                                            |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  | 5 1.94                                     |  |  |  |  |  |  |  |  |  |  |  |
| 533.60 613.08 0.826 3.54 8.83                                    | 2 2.25                                     |  |  |  |  |  |  |  |  |  |  |  |
| 667.00 613.51 0.829 3.97 9.3<br>700.00 613.60 0.830 4.07 9.50    |                                            |  |  |  |  |  |  |  |  |  |  |  |
| 700.00 613.60 0.830 4.07 9.50<br>933.80 614.23 0.834 4.70 10.20  |                                            |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |                                            |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  | 7 3.38                                     |  |  |  |  |  |  |  |  |  |  |  |
| 1200.60 614.85 0.839 5.31 10.9<br>1334.00 615.13 0.841 5.59 11.2 | 3.56                                       |  |  |  |  |  |  |  |  |  |  |  |
| 1324.00 012.12 0.041 3.22 11.2                                   | 3.50                                       |  |  |  |  |  |  |  |  |  |  |  |
| ***************************************                          | *********                                  |  |  |  |  |  |  |  |  |  |  |  |
| **************************************                           |                                            |  |  |  |  |  |  |  |  |  |  |  |
| ***************************************                          |                                            |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |                                            |  |  |  |  |  |  |  |  |  |  |  |
| ROADWAY SURFACE                                                  | PAVED                                      |  |  |  |  |  |  |  |  |  |  |  |
| EMBANKMENT TOP WIDTH                                             | 155.00 ft                                  |  |  |  |  |  |  |  |  |  |  |  |
| CREST LENGTH                                                     | 200.00 ft                                  |  |  |  |  |  |  |  |  |  |  |  |
| OVERTOPPING CREST ELEVATION                                      | 619.60 ft                                  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |                                            |  |  |  |  |  |  |  |  |  |  |  |
| ***************************************                          |                                            |  |  |  |  |  |  |  |  |  |  |  |

-